Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы не даром вспомнили Лобачевского. Труд Буля явился одним из важных путей расширения рамок математики, постановки новых задач и появления у нее новых обязательств по отношению к другим сферам знания. Такой же значительный вклад сделали еще раньше Н. И. Лобачевский (1792—1855) и У. Р. Гамильтон (1805—1865). До начала XIX века математику рассматривали как прямое отражение свойств реальных вещей. Лобачевский и Гамильтон первыми в истории науки создали математические структуры, не «скопированные» непосредственно с каких-либо известных всем явлений, отношений или процессов. Такая самостоятельность формирования математических структур в то время выглядела столь непривычной, что сами их создатели были немало смущены собственными творениями и могли бы произнести слова, которые позже сказал Г. Кантор: «Вижу, но не верю».

Лобачевский, как известно, построил геометрию, в которой на плоскости через каждую точку можно провести две прямые, параллельные данной прямой, и бесчисленное множество прямых, не пересекающихся с данной прямой. В этой геометрии сумма углов треугольника оказывалась меньше 180 градусов. Поскольку геометрию в те времена считали наукой об измерениях твердых тел и расстояний, и этого же взгляда придерживался сам Лобачевский, он полагал, что его система окажется «неверной», если реальные прямые линии — скажем, световые лучи — не будут подчиняться ее законам. Для сравнительно небольших масштабов хорошо подходит обычная (эвклидова) геометрия: самое тщательное измерение, произведенное над треугольником, начерченным на бумаге, показывает, что сумма его углов составляет 180 градусов. Но может быть, думал Лобачевский, это лишь следствие неточности измерения, результат того, что мы с нашими инструментами не можем обнаружить небольшую недостачу суммы углов. Возможно, если измерить углы громадного треугольника, со сторонами в миллионы километров, выяснится, что в таких масштабах начинает уже явно действовать новая геометрическая система, и, следовательно, завоевывает свое право на жизнь новый вариант пятого постулата Эвклида. Чтобы проверить свою геометрию, Лобачевский собирался провести серию астрономических наблюдений.

С таким же психологическим барьером было связано создание Гамильтоном кватернионов. Гамильтон искал аналог комплексных чисел, интерпретируемый в трехмерном пространстве (обычные комплексные числа изображаются точками на плоскости). Он искал такие числа в течение пятнадцати лет, но безрезультатно. Это стало для него некой навязчивой идеей (говорят, что его домашние каждое утро спрашивали его за завтраком: «Ну как, нашел ты свои кватернионы?»). И вот, 16 октября 1843 года во время прогулки Гамильтона озарила неожиданная идея: все трудности возникали из-за того, что в течение всех этих поисков он постоянно предполагал, что операция умножения новых чисел должна подчиняться закону коммутативности, то есть, что для них, как и для обычных комплексных (и, конечно, действительных) чисел справедливо утверждение: от перестановки сомножителей произведение не меняется. А кто сказал, что этот закон универсален, обязателен для всех типов чисел? Когда требование коммутативности умножения было снято, работы осталось на несколько минут. Собственно, основные расчеты, связанные с построением системы кватернионов, были сделаны тут же, в уме (Гамильтон написал основную формулу на граните моста, по которому в тот момент проходил с женой). Сконструировав кватернионы, Гамильтон смотрел на них с тем же удивлением, с каким Лобачевский смотрел на свою геометрию: ведь все известные вычислительные процессы коммутативны, чему же «подражают» эти странные числа? Их поведение, вероятно, выглядело тогда просто мистическим.

Сейчас, по прошествии почти полутора сотен лет, чувства Лобачевского и Гамильтона могут показаться наивными. Но нельзя упускать из вида, что с тех пор произошло коренное изменение во взгляде на роль и место математики в системе человеческого знания. В наши дни математика обязана не только строить формализованные модели каких-то явлений, уже известных физике, биологии или другим областям знания, но и заготавливать формальные структуры впрок, для возможного использования в будущем. Теперь математик зачастую совершенно не интересуется, соответствует ли его конструкция чему-то уже познанному в окружающем мире. Им движет в основном стремление усовершенствовать математику не как аппарат для описания чего-то, а как аппарат вообще. Он ищет возможности Для выявления новых связей между отраслями математики, для укорочения уже существующих связей, для упрощения теорий, для придания им компактности и ясности

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x