Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы пояснить, какого рода логические рассуждения можно было «передать» машине Джевонса, расскажем о его логическом исчислении. Это исчисление было модификацией алгебры логики Дж. Буля, о вкладе которого в интересующую нас область речь пойдет в следующей главе.

Исчисление Джевонса представляло собой некоторую логику равенств, так как каждое высказывание записывалось в нем в виде равенства, то есть выражения вида А = В, где А и В могли быть сложными логическими выражениями. Преобразование равенств производилось по правилу замены равным, известному из школьной алгебры, так как на нем основаны тождественные преобразования алгебраических выражений.

Правило это (его Джевонс называл «принципом замещения») гласит: если верно, что А = В, и об А нечто утверждается (то есть A входит в состав какого-то сложного утверждения, признаваемого верным), то тоже самое должно утверждаться и о В. Как, разъясняет Джевонс, «то, что верно об одной вещи, будет верно и относительно другой, равнозначащей с первой» [14] 30 14. Ст. Джевонс. Основы науки. Трактат о логике и научном методе. Спб, 1881, с. 2. В этой книге читатель найдет подробное и очень доступное изложение алгебры логики Джевонса — теории, в которой впервые в логике фактически присутствовало то, что ныне называется булевой алгеброй (см. следующую главу). В нашем изложении мы несколько изменили символику Джевонса, приблизив ее к современной. Примеры, которыми мы оперируем, принадлежат Джевонсу. .

Логика Джевонса была логикой классов; суждения в ней записывались как равенства и истолковывались как высказывания о классах (множествах) предметов. Смысл равенств был следующим:

(1) А = В — простое тождество: множества A и B совпадают. Например, «Равносторонние треугольники = равноугольные треугольники», то есть «Все равносторонние треугольники равноугольны».

(2) A = АВ — частичное тождество: класс A совпадает с пересечением классов А и В [15] 31 15. Операция пересечения двух произвольных классов (множеств) — это операция, порождающая такой класс — его обычно обозначают А ∩ В или просто AВ, как в нашей записи, который состоит из элементов, входящих как в класс A, так и в класс В. В дальнейшем будут использоваться также понятия объединения двух классов и дополнения к классу. Операцией объединения произвольных классов A и В называется операция, порождающая такой класс (он обозначается через A ∪ В), который состоит из элементов, входящих хотя бы в один из классов: в A или в В. Операция взятия дополнения к произвольному классу A (до некоторого объемлющего универсального класса, или универсума, V) есть операция, порождающая класс, состоящий из всех тех и только тех) элементов универсума, которые не входят в класс А; дополнение к А обозначается через A' или -A. Заметим, что операции пересечения и объединения классов обладают свойством коммутативности (перестановочности, симметричности), то есть А ∩ В = В ∪ А, А ∪ В = В ∩ А (это свойство используется ниже в примере 3). .

Например, «Млекопитающие = млекопитающие позвоночные», чему в обычной речи соответствует «Все млекопитающие суть позвоночные».

(3) АВ = АС — ограниченное тождество: тождество B и C ограничено сферой вещей, которые суть A. Например, «Материальное вещество = материальное тяготеющее вещество».

(4) A = АВ' — выражает отрицательное суждение «Ни одно A не есть В». Например, «Элемент = то, что не может быть разложено». Здесь В' — класс, дополняющий B до «класса всех вещей» - универсального класса V.

(5) A = АВ ∪ АС — формула так называемого разделительного (дизъюнктивного) суждения «A суть B или C» («Красный металл есть медь или золото»).

(6) РА = РАВ — формула частного суждения «Некоторые A являются В» («Некоторые металлы имеют меньшую плотность, чем вода»). Здесь β — знак «неопределенного количества»; РА означает какую-то (неопределенную, но фиксированную) часть класса A.

В процессе дедукции в теории Джевонса используются законы тождества, противоречия и исключенного третьего. Закон тождества, в наиболее общей формулировке утверждающий требование неизменности понятий и суждений в процессе рассуждения, передается формулой A = A, где A —любое множество. Закон противоречия, запрещающий признание истинным высказывания и его отрицания, записывается, по Джевонсу, как AA' = Λ (результат пересечения произвольного класса A со своим дополнением есть пустой класс; здесь Λ — знак пустого множества, то есть множества, не содержащего ни одного элемента). Закон исключенного третьего, утверждающий, что если дано высказывание и его отрицание, то по крайней мере оно из них верно (верность того и другого запрещается законом противоречия), Джевонс записывает в виде разделительного суждения A = АВ ∪ АВ'. Эту запись можно иллюстрировать суждением «Вода бывает соленая или пресная (то есть несоленая)» («Вода = соленая вода или пресная вода»). Очевидно, это суждение истинно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x