Далее Ньютон объясняет, что эта сила пропорциональна массе тела и «если отличается от инерции массы, то разве только воззрением на нее». Иногда мы характеризуем массу по ее роли как то качество, которое сопротивляется изменению движения, и называем ее «инертной массой».
Определение IV
«Приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения».
Здесь определяется общая концепция силы, но еще не дается никакого численного значения, которое мы должны приписать данной силе.
В определениях V–VIII определяется центростремительное ускорение и его свойства.
После определений идет «Поучение» (или пояснение), в котором Ньютон отказывается давать определения пространства и времени, но предлагает их описание:
«I. Абсолютное, истинное математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью…
II. Абсолютное пространство по самой своей сущности, безотносительно к чему-либо внешнему, остается всегда одинаковым и неподвижным».
И Лейбниц, и епископ Джордж Беркли критиковали это определение времени и пространства на основании того, что только относительное положение во времени и пространстве имеет смысл. В «Поучении» Ньютон объясняет, что обычно мы имеем дело с относительными положениями и скоростями, но теперь он получил новый ключ к понятию абсолютного пространства: в ньютоновской механике ускорение (в отличие от положения и скорости) имеет абсолютное значение. Как может быть иначе? Из повседневного опыта известно, что ускорение оказывает свое влияние, и нет никакой необходимости спрашивать: ускорение относительно чего? Из того, что сила отбросила нас на спинки сидений, мы понимаем, что ускоряемся, если находимся в машине, которая резко набирает скорость, независимо от того, смотрим ли мы в этот момент в окно. Как мы увидим далее, в XX в. точки зрения Ньютона и Лейбница на пространство и время были объединены в Общей теории относительности.
Затем Ньютон переходит к трем знаменитым законам движения:
Первый закон
«Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».
Это уже было известно Гассенди и Гюйгенсу. Не совсем понятно, почему Ньютон решил выделить это положение в отдельный закон, так как Первый закон является тривиальным (хотя и важным) следствием из Второго.
Второй закон
«Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует».
Здесь под «изменением количества движения» Ньютон имеет в виду изменение импульса [21], который он называет «количеством движения» в определении II. В действительности скорость изменения импульса пропорциональна этой силе. Традиционно мы определяем единицы, в которых измеряется сила, так, что скорость изменения импульса фактически равна силе. Поскольку импульс – это масса, умноженная на скорость, скорость его изменения – это масса, умноженная на ускорение. Таким образом, Второй закон Ньютона определяет, что масса, умноженная на ускорение, равна силе, деленной на ускорение. Но знаменитое равенство F = ma в «Математических началах» так и не появляется; таким образом Второй закон был сформулирован европейскими математиками в XVIII в.
Третий закон
«Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны».
В истинно геометрическом стиле Ньютон приводит серию следствий, выведенных из этих законов. Самое значимое среди них – следствие III, где формулируется закон сохранения импульса (см. техническое замечание 34).
Закончив с определениями, законами и следствиями, Ньютон в Книге I начинает делать из них выводы. Он доказывает, что только центральные силы (силы, направленные к одной точке в центре) заставляют тело двигаться так, чтобы за равные промежутки времени отсекать равные площади; что центральные силы обратно пропорциональны квадрату расстояния и только такие центральные силы производят движение по коническому сечению, то есть по кругу, эллипсу, параболе или гиперболе; что при движении по эллипсу такая сила создает периоды, пропорциональные 3/2 длины большей оси эллипса (которая, как было упомянуто в главе 11, является усредненным по всей протяженности ее пути расстоянием от планеты до Солнца). Таким образом, центральная сила, обратно пропорциональная квадрату расстояния, отвечает за все три закона Кеплера. Также Ньютон заполняет пробелы в своем сравнении центростремительного ускорения Луны и ускорения свободного падения, доказывая в отделе XII части I книги, что сферическое тело, состоящее из частиц, каждая из которых производит силу, обратно пропорциональную квадрату расстояния, производит общую силу, обратно пропорциональную квадрату расстояния до центра сферы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу