Если быть точнее, Ньютон взял радиус орбиты Луны (хорошо известный по измерению суточного параллакса Луны), равный 60 земным радиусам; в действительности он составляет около 60,2 земных радиуса. Он использовал грубое округление значения радиуса Земли {258}, в результате чего получилось весьма приблизительное значение радиуса орбиты Луны, и, зная, что сидерический период обращения Луны вокруг Земли составляет примерно 27,3 суток, он смог оценить скорость Луны и из нее вывести центростремительное ускорение. Это ускорение оказалось меньше ускорения свободного падения у поверхности Земли на показатель, приближенно (очень приближенно) равный 1/(60)², чего и можно было ожидать, если считать силу, удерживающую Луну на ее орбите, той же, что притягивает тела к земной поверхности, лишь уменьшенной в соответствии с законом обратных квадратов (см. техническое замечание 33). Именно это Ньютон имел в виду, когда говорил о двух силах, что «нашел, что они подходят очень хорошо».
Это был кульминационный шаг в объединении земного и небесного в науке. Коперник поместил Землю среди других планет, тогда как Тихо Браге показал, что в небесах происходят изменения, а Галилей увидел, что поверхность Луны неровная, как и поверхность Земли, но ни одно из этих нововведений не связывало движение планет с силами, которые можно наблюдать на Земле. Декарт пытался понять движение тел в Солнечной системе как результат взаимодействия вихрей в эфире, сравнивая их с вихрями в луже воды на Земле, но его теория не имела успеха. Теперь же Ньютон показал, что сила, которая удерживает Луну на орбите вокруг Земли и планеты на их орбитах вокруг Солнца, – это та же самая сила притяжения, которая заставляет яблоко падать на землю Линкольншира и имеет те же самые количественные характеристики. После этого открытия о разграничении между небесным и земным, которое начиная со времен Аристотеля сдерживало развитие физики, пришлось навсегда забыть. Но от этого открытия все еще было далеко до Закона всемирного тяготения, который гласит, что любое тело во Вселенной, а не только Земля и Солнце, притягивает любое другое тело с силой, обратно пропорциональной квадрату расстояния между ними.
В аргументах Ньютона все еще зияли четыре огромные прорехи:
1. Сравнивая центростремительное ускорение Луны с ускорением свободного падения тел у поверхности Земли, Ньютон предполагал, что сила, производящая это ускорение, ослабевает обратно пропорционально квадрату расстояния но расстояния от чего? Это не имело большого значения для Луны, которая находится от Земли так далеко, что Земля может быть принята за точку, когда речь идет о движении Луны. Но для яблока, падающего на землю Линкольншира, Земля простирается непосредственно под деревом, от места, расположенного всего в нескольких метрах, до места на противоположной стороне Земли, отдаленного на 12 742 км. Ньютон предполагал, что расстояние, которое соотносится с любым падающим телом у поверхности Земли, – это расстояние до центра Земли, но это не было очевидно.
2. Ньютоновское объяснение Третьего закона Кеплера не принимало во внимание совершенно очевидную разницу между планетами. Каким-то образом не придавалось никакого значения тому, что Юпитер намного больше Меркурия; разница между их центростремительными ускорениями зависела только от расстояния до Солнца. Еще более значительным было то, что ньютоновское сравнение центростремительного ускорения Луны и ускорения свободного падения у поверхности Земли полностью игнорировало разницу между Луной и любым падающим телом, например, яблоком. Почему эта разница не имеет никакого значения?
3. В работе, датированной им 1665–1666 гг., Ньютон интерпретировал Третий закон Кеплера как положение о том, что для любых разных планет произведение центростремительного ускорения на квадраты их расстояний от Солнца будет одинаковым. Но общее значение этого произведения совсем не равно произведению центростремительного ускорения Луны на квадрат ее расстояния до Земли; оно намного больше. Что влияет на эту разницу?
4. Наконец, в своей работе Ньютон считал, что орбиты планет и Луны являются круговыми и небесные тела движутся по ним с постоянной скоростью, хотя Кеплер доказал, что орбиты являются не окружностями, а эллипсами, Солнце и Земля находятся не в центре эллипса, а скорости планет и Луны только приближаются к постоянным.
Начиная с 1666 г. Ньютон пытался разобраться с этими неувязками. Тем временем другие ученые приходили к тем же выводам, что и Ньютон. В 1679 г. старый соперник Ньютона Гук опубликовал свои «кутлеровские лекции», в которых содержались некоторые предположения по поводу движения и притяжения, хотя и без математических доказательств:
Читать дальше
Конец ознакомительного отрывка
Купить книгу