Ричард Фейнман - 8. Квантовая механика I
Здесь есть возможность читать онлайн «Ричард Фейнман - 8. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:8. Квантовая механика I
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
8. Квантовая механика I: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
8. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
В нерелятивистской квантовой механике, где энергии не очень высоки и где вы не затрагиваете внутреннего устройства странных частиц и т. п., вы можете делать весьма сложные расчеты, не заботясь об этих деталях. Вы можете просто остановиться на импульсах и спинах электронов и ядер и все будет в порядке. В большинстве химических реакций и других низкоэнергетических событий в ядрах ничего не происходит; они не возбуждаются. Дальше, если атом водорода движется медленно и если он спокойно стукается о другие атомы водорода и ничего внутри него не возбуждается, не излучается, никаких сложностей не происходит, а все остается в основном состоянии энергии внутреннего движения, — в этом случае вы можете пользоваться приближением, при котором об атоме водорода говорят как об отдельном предмете, или частице, не заботясь о том, что он может что-то внутри себя с собой сделать. Это будет хорошим приближением до тех пор, пока кинетическая энергия в любом столкновении будет заметно меньше 10 эв, т. е. энергии, требуемой для того, чтобы возбудить атом водорода до следующего внутреннего состояния. Мы часто будем прибегать к приближению, при котором исключается возможность внутреннего движения, тем самым уменьшая число деталей, которые должны быть учтены в наших базисных состояниях. Конечно, при этом мы опускаем кое-какие явления, которые проявляются (как правило) при каких-то высших энергиях, но такое приближение сильно упрощает анализ физических задач. Например, можно рассуждать о столкновении двух атомов водорода при низкой энергии (или о любом химическом процессе), не заботясь о том, что атомные ядра могут возбуждаться. Итак, подведем итог. Когда мы вправе пренебречь влиянием любых внутренних возбужденных состояний частицы, мы вправе выбрать базисную совокупность из состояний с определенным импульсом и z-компонентой момента количества движения.
Первой проблемой при описании природы является отыскание подходящего представления для базисных состояний. Но это только начало. Надо еще уметь сказать, что «случится». Если известны «условия» в мире в один момент, то мы хотим знать условия в более поздний момент. Значит, надо также найти законы, определяющие, как все меняется со временем. Мы теперь обращаемся ко второй части основ квантовой механики — к тому, как состояния меняются во времени.
§ 4. Как состояния меняются во времени
Мы уже говорили о том, как отображать ход событий, где мы что-то пропускаем через прибор. Но самый привлекательный, самый удобный для рассмотрения «опыт» состоит в том, что вы останавливаетесь и ждете несколько минут, т. е. вы приготовляете состояние j и, прежде чем проанализировать его, оставляете его в покое. Быть может, вы оставите его в покое в каком-то электрическом или магнитном поле — все зависит от физических обстоятельств. Во всяком случае, какими бы ни были условия, вы от момента t 1до момента t 2оставляете объект на свободе. Допустим, что он выпущен из нашего первого прибора в состоянии j в момент t 1 . А затем он проходит через «прибор», в котором он находится до момента t 2. Во время такой «задержки» могут продолжаться различные события, прилагаться внешние силы,— словом, что-то в это время случается. После такой задержки амплитуда того, что этот объект обнаружится в состоянии c, уже не та же самая, какой она была бы, если бы задержки не было. Так как «ожидание» — это просто частный случай «прибора», то можно описать то, что происходит, задав амплитуду в том же виде, как в уравнении (6.17). Поскольку операция «ожидания» представляет особую важность, мы вместо А обозначим ее U, а чтобы отмечать начальный и конечный моменты t 1и t 2, будем писать U (t 2 , t 1 ). Интересующая нас амплитуда — это
Как и всякая подобная амплитуда, она может быть представлена в той или иной базисной системе в виде
Тогда U описывается заданием полной совокупности амплитуд — матрицы
Кстати, следует отметить, что матрица < i | U(t 2 , t 1| j > могла бы дать гораздо больше всяких деталей, чем нам обычно нужно. Теоретик высокого класса, работающий в физике высоких энергий, рассматривает примерно такие проблемы (потому что именно так обычно ставятся эксперименты): он начинает с двух частиц, скажем с протона и протона, налетающих друг на друга из бесконечности. (В лаборатории обычно одна частица покоится, другая же вылетает из ускорителя, который по атомным масштабам пребывает в бесконечности.) Они сталкиваются, и в итоге появляются, скажем, два К -мезона, шесть p-мезонов и два нейтрона с определенными импульсами в определенных направлениях. Какова амплитуда того, что это случится? Математика здесь выглядит так. Состояние j отмечает спины и импульсы сближающихся частиц. а c — это сведения о том, что получается в конце. К примеру, с какой амплитудой вы получите шесть мезонов, идущих в таких-то и таких-то направлениях, а два нейтрона, вылетающих вот в этих направлениях и со спинами, торчащими так-то и так-то. Иными словами, c отмечается заданием всех импульсов, спинов и т. п. конечных продуктов. И вот работа теоретика состоит в том, чтобы подсчитать амплитуду (6.27). Однако на самом деле его интересует только частный случай, когда t 1=-Ґ, а t 2=+Ґ. (У нас не бывает экспериментальных данных о детальном ходе процесса, известно только, что вошло и что вышло. Предельный случай U (t 2, t 1)при t 1®-Ґ и t 2®+Ґ обозначается буквой S; теоретик нуждается в величине
Читать дальшеИнтервал:
Закладка:
Похожие книги на «8. Квантовая механика I»
Представляем Вашему вниманию похожие книги на «8. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «8. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.