Ричард Фейнман - 6. Электродинамика
Здесь есть возможность читать онлайн «Ричард Фейнман - 6. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:6. Электродинамика
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
6. Электродинамика: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
6. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Осознав, что электрический ток рождает магнитное поле, многие "сразу же предположили, что так или иначе магниты должны тоже создавать электрические поля. Для проверки этого предположения были поставлены различные эксперименты. Например, располагали два провода параллельно друг другу и по одному из них пропускали ток, пытаясь обнаружить ток в другом проводе. Мысль заключалась в том, что магнитное поле сможет как-то протащить электроны вдоль второго провода по закону, который должен формулироваться как-то так: «одинаковое стремится двигаться одинаковым образом». Но, пропуская по одному проводу самый большой ток и используя самый чувствительный гальванометр, обнаружить ток во втором проводе не удалось. Большие магниты тоже не давали никакого эффекта в расположенных поблизости проводах. Наконец, в 1840 г. Фарадей открыл существенную особенность, которую раньше упускали из виду,— электрические эффекты возникают только тогда, когда что-нибудь изменяется, Если в одной из двух проволок ток меняется, то в другой тоже наводится ток, или же если магнит движется вблизи электрического контура, то там возникает ток. Мы говорим теперь, что токи в этих случаях индуцируются. В этом и состояло явление индукции, открытое Фарадеем. Оно преобразило довольно скучную область статических полей в увлекательную динамическую область, в которой происходит огромное число удивительных явлений. Эта глава посвящена качественному описанию некоторых из них. Как мы увидим, можно довольно быстро попасть в очень сложные ситуации, трудно поддающиеся подробному количественному анализу. Но это неважно. Наша главная задача в этой главе — сначала познакомить вас с кругом относящихся сюда явлений. Тщательный анализ мы проделаем немного позже.
Из того, что мы уже знаем, нам легко понять кое-что о магнитной индукции, то, что не было известно во времена Фарадея. Мы знаем о существовании действующей на движущийся заряд силы vXВ, которая пропорциональна его скорости в магнитном поле. Пусть у нас есть проволока, которая движется вблизи магнита (фиг. 16.2), и пусть мы подсоединили концы проволоки к гальванометру. Когда проволока проходит над полюсом магнита, стрелка гальванометра сдвигается.
Магнит создает вертикальное магнитное поле, и, когда мы двигаем проволоку поперек поля, электроны в проволоке чувствуют силу, направленную вбок, т. е. перпендикулярно нолю и направлению движения. Сила толкает электроны вдоль проволоки. Но почему же при этом приходит в движение стрелка гальванометра, который расположен так далеко от этой силы? Да потому, что электроны, испытывающие магнитную силу, начинают двигаться и толкают (за счет электрического отталкивания) другие электроны, находящиеся чуть дальше по проволоке, а те в свою очередь отталкивают еще более удаленные электроны и так далее на большое расстояние.
Фиг. 16.2. Движение провода в магнитном поле создает ток (это регистрирует, гальванометр).
Любопытная штука.
Это так удивило Гаусса и Вебера, построившего впервые гальванометр, что они попытались определить, как далеко распространяются силы по проволоке. Они протянули проволоку поперек всего города, и один ее конец Гаусс присоединил к батарее (батареи были известны раньше генераторов), а Вебер наблюдал, как сдвигается стрелка гальванометра. И они обнаружили способ передавать сигналы на большое расстояние — это было рождение телеграфа! Разумеется, здесь нет прямого отношения к индукции, здесь речь шла о способе передачи тока по проволоке, о том, действительно ли ток продвигается за счет индукции или нет.
Предположим теперь, что в установке, изображенной на фиг. 16.2, мы проволоку оставляем в покое, а двигаем магнит. И снова наблюдаем эффект на гальванометре. Фарадей еще обнаружил, что движение магнита под проволокой (один способ) вызывает такой же эффект, как и движение проволоки над магнитом (другой способ). Но когда движется магнит, то на электроны проволоки уже больше не действует сила v X В. Это и есть то новое явление, которое открыл Фарадей. Сегодня мы можем попытаться понять его с помощью принципа относительности.
Мы уже поняли, что магнитное поле магнита возникает за счет его внутренних токов. Поэтому мы ожидаем появления такого же эффекта, если вместо магнита на фиг. 16.2 взять катушку из проволоки, по которой течет ток. Если двигать провод мимо катушки, то гальванометр обнаружит ток, равно, как и в том случае, когда катушка движется мимо провода. Но существует и еще более удивительная вещь: если менять магнитное поле катушки не за счет ее движения, а за счет изменения в ней тока, то гальванометр снова покажет наличие эффекта. Например, если расположить проволочную петлю рядом с катушкой (фиг. 16.3), причем обе они неподвижны, и выключить ток, то через гальванометр пройдет импульс тока. Если же снова включить ток в катушке, то стрелка гальванометра качнется в противоположную сторону.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «6. Электродинамика»
Представляем Вашему вниманию похожие книги на «6. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «6. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.