А какая доля падающего света рассеивается электроном? Вообразим мишень с площадью а, помещенную на пути луча (не настоящую мишень, сделанную из какого-то вещества, потому что она приведет к дифракции света и т. п., а воображаемую мишень, нарисованную в пространстве). Количество энергии, проходящее через поверхность 0, пропорционально падающей интенсивности и площади мишени:
(32.18)
А теперь давайте условимся: полное количество энергии, рассеиваемое атомом, мы приравняем энергии падающего пучка, проходящей через некоторую площадь; указав величину площади, мы тем самым определяем рассеиваемую энергию. В такой форме ответ не зависит от интенсивности падающего пучка; он выражает отношение рассеиваемой энергии к энергии, падающей на 1 м 2. Другими словами,

Смысл этой площади заключается в том, что, если бы вся попадающая на нее энергия отбрасывалась в сторону, она рассеивала бы столько энергии, сколько рассеивает атом.

Эта площадь называется эффективным сечением рассеяния. Понятие эффективного сечения используется всегда, когда эффект пропорционален интенсивности падающего пучка. В таких случаях количественный выход эффекта задается площадью эффективной области, выхватывающей из пучка такую часть, чтобы она равнялась выходу. Это ни в коем случае не означает, что наш осциллятор на самом деле занимает подобную площадь. Если бы свободный электрон просто качался взад и вперед, ему бы не соответствовала никакая площадь. Это лишь способ выражения результата через определенную величину; мы указываем площадь, на которую должен упасть пучок, чтобы получилась известная энергия рассеяния. Итак, в нашем случае
(32.19)
(s — рассеяние).
Рассмотрим несколько примеров. Прежде всего, когда собственная частота очень мала или электрон вообще свободен, что соответствует w 0= 0, частота w выпадает и сечение s становится константой. В этом пределе сечение носит название томпсоновского сечения рассеяния. Оно равно площади квадратика со стороной около 10 -15м, т. е. площади 10 -30м 2, а это очень мало!
С другой стороны, при рассеянии света в воздухе собственные частоты осцилляторов, как мы уже говорили, больше частот обычного света. Отсюда следует, что величиной w 2в знаменателе можно пренебречь и сечение оказывается пропорциональным четвертой степени частоты. Значит, свет с частотой, в два раза большей, рассеивается в шестнадцать раз интенсивнее, а это уже вполне ощутимая разница. Таким образом, голубой свет, частота которого примерно вдвое выше частоты света у красного конца спектра, рассеивается значительно интенсивнее, чем красный свет. И, взглянув на небо, мы видим только изумительную синеву!
Стоит сказать еще несколько слов по поводу полученных результатов. Ответьте, во-первых, почему мы видим облака? Откуда они берутся? Всем известно, что возникают они за счет конденсации водяных паров. Но водяные пары, конечно, находились в атмосфере еще до конденсации. Почему же мы их не видели? А вот после конденсации их прекрасно видно. Не были видны — и вдруг появились. Как видите, тайна происхождения облаков — это совсем не детский вопрос, вроде «Папа, откуда взялась вода?», и ее нужно объяснить.
Мы только что говорили, что каждый атом рассеивает свет, и, естественно, водяной пар тоже должен рассеивать свет. Загадка состоит в том, почему вода, конденсированная в облаках, рассеивает свет сильнее в такое огромное число раз?
Давайте посмотрим, что получится, если вместо одного атома взять скопление атомов, скажем два атома, расположенных очень близко друг к другу по сравнению с длиной волны. Вспомним, что размеры атомов порядка 1 Е, а длина волны света порядка 5000 Е, так что несколько атомов вполне могут образовать сгусток, где расстояние между ними будет много меньше длины волны. Под действием электрического поля оба атома будут колебаться совместно, как целое. Рассеиваемое электрическое поле окажется равным сумме двух полей с одинаковой фазой, т. е. удвоенной амплитуде одного атома, а энергия увеличится в четыре, а не в два раза по сравнению с энергией излучения от отдельного атома! Таким образом, сгустки атомов излучают или рассеивают больше энергии, чем столько же атомов по отдельности. Наше старое утверждение, что фазы двух атомов никак не связаны, основывалось на предположении о большой разности фаз двух атомов, что справедливо только когда расстояние между ними порядка нескольких длин волн или, когда они движутся. Если же атомы находятся совсем рядом, они излучают обязательно с одной фазой, и возникает усиливающая интерференция, что приводит к увеличению рассеяния.
Читать дальше