Ричард Фейнман - 3. Излучение. Волны. Кванты

Здесь есть возможность читать онлайн «Ричард Фейнман - 3. Излучение. Волны. Кванты» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

3. Излучение. Волны. Кванты: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «3. Излучение. Волны. Кванты»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

3. Излучение. Волны. Кванты — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «3. Излучение. Волны. Кванты», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Интересно узнать, из-за чего возникает радиационное сопро­тивление. Возьмем простой пример: пусть ток по антенне течет попеременно вверх и вниз. Если сообщить заряженному телу ускоренное движение вверх и вниз, то оно начнет излучать (не­заряженное тело при этом энергию не излучает). Раз антенна из­лучает энергию, мы должны совершать над ней работу. Но одно дело показать с помощью закона сохранения энергии, что энер­гия теряется, и совсем другое — ответить на вопрос: против какой силы мы совершаем работу? Это очень интересный и труд­ный вопрос, на который применительно к электронам так и не удалось дать полного и удовлетворительного ответа. Однако в случае антенн ответ был найден. Вот что происходит в антеннах: поля, создаваемые движущимися электронами в одной части антенны, воздействуют на электроны в другой части. Можно вы­числить действующие силы и найти производимую ими работу, а отсюда получить формулу для радиационного сопротивления. Было бы неправильно утверждать: «Мы можем вычислить», потому что мы еще не изучили законы электричества на малых расстояниях и знаем, каково электрическое поле только на больших расстояниях. Хотя мы привели формулу (28.3), мы еще не можем ею воспользоваться для вычисления поля внутри волновой зоны, потому что эта формула для нас слитком слож­на. Правда, с помощью закона сохранения энергии мы можем получить результат и не зная вида поля на малых расстояниях. (Обращая ход рассуждений, можно найти взаимодействие на малых расстояниях, если известен вид поля на больших расстоя­ниях и если затем воспользоваться законом сохранения энергии; мы, однако, не будем сейчас заниматься этим вопросом.)

Пусть теперь имеется один-единственный электрон; к чему приложена возникающая в нем сила сопротивления? Старая классическая теория представляла электрон в виде маленького шарика, различные части которого взаимодействуют друг с другом. В результате запаздывания при распространении взаи­модействия внутри этого шарика сила оказывается несколько смещенной по фазе относительно скорости движения. Мы знаем, что, когда электрон покоится, «действие равно противодейст­вию». Поэтому внутренние силы уравновешиваются и результирующая сила равна нулю. Но в ускоренном электроне сила, дей­ствующая на переднюю половинку со стороны задней, из-за запаздывания не равна силе, действующей в обратном направ­лении. Запаздывание взаимодействия во времени нарушает баланс сил, и в результате вся система как бы «наступает сама себе на шнурки». Такое объяснение возникновения радиацион­ного сопротивления у движущегося электрона встретилось со многими трудностями и, прежде всего потому, что по совре­менным представлениям электрон вовсе не «маленький шарик»; проблема так и осталась нерешенной по сей день. Тем не менее, даже не зная механизма действия сил, мы можем точно вычис­лить силу сопротивления излучения, т. е. затраты энергии на ускорение заряда.

§ 2. Интенсивность излучения

Вычислим теперь полную энергию, излучаемую зарядом при ускорении. Для общности возьмем случай произвольного уско­рения, считая, однако, движение нерелятивистским. Когда уско­рение направлено, скажем, по вертикали, электрическое поле излучения равно произведению заряда на проекцию запаздыва­ющего ускорения, деленному на расстояние. Таким образом, нам известно электрическое поле в любой точке, а отсюда мы знаем энергию e 0cE 2, проходящую через единичную площадку за 1 сек.

Величина e 0c часто встречается в формулах распространения радиоволн. Обратную ей величину можно назвать импедансом вакуума (или сопротивлением вакуума); она равна 1/e 0с =377 ом. Отсюда мощность (в ваттах на квадратный метр) есть средний квадрат поля, деленный на 377.

3 Излучение Волны Кванты - изображение 142

С помощью формулы (29.1) для электрического поля мы по­лучаем

(32.2)

где S — мощность на 1 м 2, излучаемая под углом q. Как уже отмечалось, S обратно пропорционально расстоянию. Интегри­руя, получаем отсюда полную мощность, излучаемую во всех направлениях. Для этого сначала умножим S на площадь по­лоски сферы, тогда мы получим поток энергии в интервале угла dq (фиг. 32.1). Площадь полоски вычисляется следующим обра­зом: если радиус равен r, то толщина полоски равна rdq, а длина 2prsinq, поскольку радиус кольцевой полоски есть rsinq. Таким образом, площадь полоски равна

323 Фиг 321 Площадь кольца на сфере равная 2nr sin QrdQ - фото 143

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «3. Излучение. Волны. Кванты»

Представляем Вашему вниманию похожие книги на «3. Излучение. Волны. Кванты» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «3. Излучение. Волны. Кванты»

Обсуждение, отзывы о книге «3. Излучение. Волны. Кванты» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x