Ричард Фейнман - 3. Излучение. Волны. Кванты

Здесь есть возможность читать онлайн «Ричард Фейнман - 3. Излучение. Волны. Кванты» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

3. Излучение. Волны. Кванты: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «3. Излучение. Волны. Кванты»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

3. Излучение. Волны. Кванты — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «3. Излучение. Волны. Кванты», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот почему во многих случаях мы не замечаем эффекта интер­ференции, а полная интенсивность оказывается равной сумме интенсивностей всех источников.

§ 5. Рассеяние света

Приведенные выше примеры помогут нам понять одно явле­ние, которое возникает в воздухе в результате неупорядочен­ного расположения атомов. В главе о показателе преломления мы говорили, что падающий свет вызывает излучение атомов. Электрическое поле падающего пучка раскачивает электроны вверх и вниз, и они, двигаясь с ускорением, начинают излу­чать. Это рассеянное излучение образует пучок света, движу­щийся в том же направлении, что и падающий луч, но отличаю­щийся от него по фазе, благодаря чему и возникает показатель преломления.

Но что можно сказать об интенсивности рассеянного света в других направлениях? Если атомы очень правильно череду­ются, образуя красивый геометрический узор, интенсивность во всех остальных направлениях равна нулю, потому что ре­зультат сложения множества векторов с меняющимися фазами сводится к нулю. Но если расположение атомов беспорядочное, интенсивность в любом направлении, как мы уже говорили, равна сумме интенсивностей от каждого атома в отдельности. Более того, атомы газа постоянно движутся, и разность фаз двух атомов, принимающая определенное значение в некото­рый момент времени, в следующий момент уже изменится, поэтому при усреднении по времени исчезает каждый пере­крестный член в отдельности. Следовательно, для определе­ния интенсивности света, рассеянного газом, можно взять рассеяние на одном атоме и умножить интенсивность на чи­сло атомов.

Как уже отмечалось, голубой цвет неба объясняется именно рассеянием света в воздухе. Солнечный свет проходит сквозь воздух, и, когда мы смотрим в сторону от Солнца, например, пер­пендикулярно падающему лучу, мы видим свет голубой окрас­ки; попробуем теперь подсчитать интенсивность рассеянного света и понять, почему он голубой.

Падающий луч света с напряженностью электрического поля Е = Е 0е i v tв точке расположения атома, как известно, застав­ляет электрон колебаться вверх и вниз (фиг. 32.2). С помощью уравнения (23.8) находим амплитуду колебаний

3215 В принципе можно учесть затухание и ввести сумму по частотам - фото 157

(32.15)

В принципе можно учесть затухание и ввести сумму по частотам считая что атом - фото 158

В принципе можно учесть затухание и ввести сумму по часто­там, считая, что атом действует как совокупность осцилляторов с разными частотами. Однако для простоты ограничимся слу­чаем одного осциллятора и пренебрежем затуханием. Тогда выражение для амплитуды принимает вид, которым мы уже пользовались при вычислении показателя преломления:

(32.16)

Из этой формулы для и равенства 322 легко получить интенсивность рассеяния в заданном - фото 159и равенства (32.2) легко получить интен­сивность рассеяния в заданном направлении.

Однако чтобы сэкономить время вычислим сначала полную интенсивность рассеяния - фото 160

Однако, чтобы сэкономить время, вычислим сначала полную интенсивность рассеяния во всех направлениях. Полную энер­гию, рассеиваемую атомом за 1 сек во всех направлениях, можно получить из формулы (32.7). После перегруппировки членов выражение для энергии принимает вид

(32.17)

Фиг 322 Луч падающий на атом заставляет заряды электроны атома - фото 161

Фиг. 32.2. Луч, падающий на атом, заставляет заряды (элект­роны) атома колебаться. Движущиеся электроны в свою очередь излучают во все стороны.

Мы приводим результат в такой форме потому, что она удобна для запоминания: прежде всего, рассеиваемая энергия пропорциональна квадрату падающего поля. Что это означает? Очевидно, квадрат поля пропорционален энергии падающего пучка, проходящей за 1 сек. (В самом деле, энергия, падающая на 1 м 2за 1 сек, равна произведению e 0с и среднего квадрата электрического поля 2>; если максимальное значение Е есть Е 0то 2> = 1/ 2E 0 2.) Другими словами, рассеиваемая энергия пропорциональна плотности падающей энергии; чем сильнее солнечный свет, тем ярче кажется небо.

А какая доля падающего света рассеивается электроном Вообразим мишень с - фото 162

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «3. Излучение. Волны. Кванты»

Представляем Вашему вниманию похожие книги на «3. Излучение. Волны. Кванты» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «3. Излучение. Волны. Кванты»

Обсуждение, отзывы о книге «3. Излучение. Волны. Кванты» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x