Наверное, стоит пояснить суть машинного эксперимента на знакомом примере. Допустим, мы изучаем дислокации в модели Френкеля — Конторовой и у нас возникла туманная пока идея, что небольшие сгущения или разрежения атомов могут двигаться по цепочке, примерно как импульсы в натянутой струне. Мы заложим в машину программу решения уравнения Френкеля — Конторовой при различных начальных условиях. Скажем, такой-то кусок цепочки атомов сдвинут на такое-то расстояние, а затем отпущен. Машина вычислит нам дальнейшие события в цепочке, а современная ЭВМ может представить результат в виде набора рисунков, изображающих состояние цепочки в последовательные моменты времени, или даже изготовит для нас кинофильм, в котором события будут развиваться с удобной для человеческого восприятия скоростью (т. е. в удобном масштабе времени). Рассматривая эти картинки или фильмы, мы могли бы обнаружить рождение солитонов из довольно нерегулярных первоначальных возбуждений — «рождение солитонов из пены», столкновение солитонов и антисолитонов, образование бризеров, — в общем, всю солитонную физику.
Примерно так и произошло второе рождение солитонов, только не столь просто и быстро. Настоящий машинный эксперимент, в котором ищется что-то действительно новое, во многих отношениях не проще, чем реальный физический эксперимент. Он требует хорошего оборудования — ЭВМ плюс всякие дополнительные устройства для обработки и наглядного изображения информации. Его обычно выполняет целый коллектив ученых: математики, вычислители-программисты, физики. Надежную работу ЭВМ обеспечивает коллектив обслуживающих ее инженеров и техников. Все это очень сложно, и может возникнуть вопрос: «А удастся ли таким способом обнаружить что-то действительно неожиданное?»
Во-первых, вы можете рассчитывать получить одно, а на деле выйдет совсем другое. «Ищешь Индию — найдешь Америку!» Так получилось и с солитоном. Сначала, как мы увидим, о солитонах вовсе никто и не думал, искали ответ на вопросы, не имеющие к ним никакого отношения.
Во-вторых, и это самое замечательное, невероятно быстрое развитие технологии вычислительных машин привело к тому, что в недалеком будущем ЭВМ станет нашим постоянным спутником, с которым можно будет не расставаться буквально ни на час. Уже сегодня существуют машины, умеющие делать больше, чем те, которые удивляли Тьюринга и фон Неймана, но умещающиеся на письменном столе или даже в портфеле. Программы для такой машины можно записывать на обычный кассетный магнитофон, а полученные ею результаты (числа, таблицы, графики) — читать на экране обычного телевизора. С нею можно играть в интересные игры или решать с ее помощью труднейшие задачи. С такой машиной каждый может попытаться стать Фарадеем или хотя бы Эрстедом в машинном эксперименте.
Трудно сказать, интересны ли были бы такие опыты Фарадею или Эрстеду. Скорее всего, они показались бы им чересчур абстрактными, лишенными жизни. Но вот Эйлер или Гayсс наверняка пришли бы в восторг. Они сами были феноменальными вычислителями, а идея численного эксперимента была им близка и понятна. В сущности, Эйлер и ввел понятие о численном эксперименте в математике: «Покажется немало парадоксальным приписывать большое значение наблюдениям даже в той части математических наук, которую обычно называют чистой математикой, ибо существует распространенное убеждение, что наблюдения ограничиваются физическими объектами, которые воздействуют на наши чувства. Поскольку мы уверены, что числа принадлежат одному лишь чистому разуму, нам очень трудно представить себе пользу наблюдений и квазиэкспериментов при изучении природы чисел. В действительности же... известные сегодня свойства чисел были, по большей части, открыты путем наблюдения...»
Эйлер делал «квазиэксперименты» своими руками. Возможно, что перенапряжение, вызванное огромной вычислительной работой, и довело его до слепоты. Если бы у него была хотя бы карманная ЭВМ, он бы, конечно, экспериментировал с числами на ней, и кто знает, сколько «наблюдений» он сумел бы сделать! Современные ученые, в общем, стараются не упускать эти возможности, однако нужно сказать, что новые отрасли науки — «экспериментальная» математика, «вычислительная» физика и т. п. — пока не получили всеобщего признания.
А между тем, пока неверующие сопротивляются, а равнодушные привыкают, люди, влюбленные в ЭВМ, активно сними сотрудничают и отыскивают новые тропинки в неисследованные земли. Самая первая такая тропинка и привела в страну, где живут солитоны. Как ни странно, на эту тропинку вывели поиски природы образования хаоса в физических системах. Странно это потому, что солитоны — одинокие существа, склонные к чрезвычайно упорядоченному образу жизни, а хаос — это крайняя степень беспорядка. Какая же цепь связала солитоны с хаосом? Прежде чем ответить на этот вопрос, придется сделать небольшое отступление.
Читать дальше