Александр Филиппов - Многоликий солитон

Здесь есть возможность читать онлайн «Александр Филиппов - Многоликий солитон» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1990, ISBN: 1990, Издательство: Наука, гл. ред. физ.-мат. лит., Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Многоликий солитон: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Многоликий солитон»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.
В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.
Для школьников старших классов, студентов, преподавателей.

Многоликий солитон — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Многоликий солитон», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

*) Это то же самое, что движение по сепаратрисе (см. (4.9)).

Глава 5

ОТ МАЯТНИКОВ — К ВОЛНАМ

И СОЛИТОНАМ

Певучесть есть в морских волнах

Гармония в стихийных спорах.

Ф. Тютчев

Наглядный образ волн на поверхности воды всем хорошо известен, однако эти волны представляют собой очень сложное явление, и для первого знакомства лучше найти хорошую «карикатуру». Именно так поступил Ньютон, предложивший простую модель распространения звуковой волны. Основная идея Ньютона сводилась к тому, что при распространении волны каждая частица среды колеблется подобно маятнику и движение каждой частицы влияет на движение всех окружающих ее частиц (ближайших соседей).

Дальнейшее упрощение состоит в том, что частицы, которые могут двигаться и одновременно деформироваться, Ньютон заменяет массивными грузиками, соединенными упругими пружинками, лишенными массы. Тогда кинетическая энергия частицы среды сосредоточена на грузиках, а потенциальная энергия упругой деформации частицы запасается в пружинах. (Рассуждения Ньютона здесь, конечно, модернизированы, но ход его мыслей передается достаточно точно.) Даже после этих серьезных упрощений модель реальной трехмерной среды еще слишком сложна. Следующий шаг приводит к задаче, которая решается точно.

Волны в цепочке связанных частиц

Рассмотрим цепочку одинаковых частиц с массой m, соединенных упругими пружинками и движущихся по прямой. Физики называют эту систему моделью одномерного кристалла . Условимся поэтому называть частицы «атомами». Кавычки напоминают о том, что эти «атомы» пока не имеют никакого отношения к реальным физическим атомам. В дальнейшем мы их опускаем.

Пусть длина каждой пружинки в недеформированном состоянии равна α . Тогда покоящиеся атомы, перенумерованные, как указано на рис. 5.1, будут располагаться в точках с координатами , т. е. равновесное положение n -гo атома определяется координатой x 0 n= . Допустим теперь, что атомы отклонены от равновесного положения, так что координата n -гo атома равна х n (верхнее положение). Обозначим отклонение атома от равновесного положения буквой y n = х n- х 0 n= х n- nα и отложим отрезки y n над соответствующими точками x 0 n= .

Соединив их плавной кривой получим график изображающий отклонения атомов от - фото 106

Соединив их плавной кривой, получим график, изображающий отклонения атомов от положений равновесия.

Плавная кривая получится, конечно, не всегда. Если отклонения каких-нибудь соседних атомов отличаются достаточно сильно, то у кривой будут резкие изломы. Мы поэтому предположим, что наклон графика отклонений очень медленно меняется, Т. е. разность двух последовательных углов α n по модулю много меньше самих углов.

При этом получится плавная кривая, мало изменяющаяся на расстоянии α , и наша модель будет достаточно точно воспроизводить смещения частицы в непрерывной (сплошной) среде. Другими словами, если мы хотим на модели воспроизвести распространение волны в сплошной среде (упругая волна в стержне, звуковая волна в органной трубе, волна на скрипичной струне и т. д.), нужно брать частички малыми и располагать их на малых расстояниях друг от друга. Сверх этого, длина волны λ должна быть много больше расстояния между атомами.

Картину распространения волн в такой цепочке можно изучить на очень простом устройстве, для изготовления которого нужна хорошая и достаточно длинная плоская резиновая лента и большие скрепки (см. рис. 5.2). Разумеется, эта система гораздо сложнее, чем идеальная одномерная цепочка, и к тому же очень несовершенна.

Главный ее недостаток большие потери на трение в резине Достоинство ее - фото 107

Главный ее недостаток — большие потери на трение в резине. Достоинство ее — небольшая скорость распространения волн. Это позволяет наблюдать бегущие по цепочке волны невооруженным глазом. Скорость распространения возбуждений можно изменять, утяжеляя скрепки. Интуитивно ясно, что с увеличением массы скрепок эта скорость должна уменьшаться.

Если скрепки закреплены на ленте в их центрах тяжести, так что сила тяжести не создает дополнительного вращательного момента, действующего на скрепки, то эта система вполне аналогична линейной цепочке. При этом угол φ n аналогичен отклонению y n , а роль массы грузика играет момент инерции скрепки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Многоликий солитон»

Представляем Вашему вниманию похожие книги на «Многоликий солитон» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Штейнберг - Многоликий король. Юл Бриннер
Александр Штейнберг
Александр Филиппов - Аномальная зона
Александр Филиппов
Александр Филиппов - Вся политика. Хрестоматия
Александр Филиппов
Александр Филиппов - Когда сверкает молния
Александр Филиппов
libcat.ru: книга без обложки
Александр Филиппов
Александр Филиппов - 25 лет. Лирика, песни и сказки
Александр Филиппов
Александр Филиппов - Сказка без чудес. Роман
Александр Филиппов
Александр Филиппов - Избранный
Александр Филиппов
Отзывы о книге «Многоликий солитон»

Обсуждение, отзывы о книге «Многоликий солитон» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x