Александр Филиппов - Многоликий солитон

Здесь есть возможность читать онлайн «Александр Филиппов - Многоликий солитон» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1990, ISBN: 1990, Издательство: Наука, гл. ред. физ.-мат. лит., Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Многоликий солитон: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Многоликий солитон»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.
В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.
Для школьников старших классов, студентов, преподавателей.

Многоликий солитон — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Многоликий солитон», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Вместо возвращающей упругой силы нужно рассматривать момент упругой силы - фото 108

Вместо возвращающей упругой силы нужно рассматривать момент упругой силы, возникающий при скручивании резинки. Короче, аналогия здесь такая же, как аналогия колебаний грузика на пружинке и крутильных колебаний.

Еще одно существенное отличие нашей грубой модели от идеальной бесконечной цепочки связано с отражением волн от границ. Это происходит примерно так, как указано на рис. 5.3, где изображены графики отклонений грузиков или скрепок в последовательные моменты времени. Горбику соответствует смещение грузиков в положительном направлении оси х , впадине — в отрицательном. Когда горбик подходит к стенке, крайняя, закрепленная пружина начинает тянуть крайний грузик влево, он тянет соседние грузики, и в результате направо побежит впадина.

Если вместо продольных движений грузиков изучать их поперечные движения (в направлении оси у в плоскости ху ), то графики рис. 5.3 изображают форму поперечного импульса в цепочке. Наблюдать такие импульсы и волны можно с помощью мягкой и достаточно длинной резиновой трубки. Проделать соответствующие простые опыты несложно, и читатель может проявить здесь фантазию и изобретательность.

В резиновой трубке или ленте, закрепленных на концах, легко возбуждать стоячие волны . Особенно легко возбуждается колебание, в котором нетрудно узнать «полусинусоиду». При этом все точки колеблются в одинаковой фазе, и амплитуда колебаний максимальна в середине («пучность» стоячей волны). Длина такой стоячей волны равна удвоенной длине ленты *). Труднее возбудить колебание, в котором остается в покое середина («узел» стоячей волны). На всей ленте при этом укладывается «период синусоиды», и длина волны равна длине ленты. Чтобы возбудить такое колебание, нужно оттянуть ленты в противоположные стороны на равных расстояниях от краев, удерживая середину в покое. Легче наблюдать такую волну на приборчике со скрепками. Возбудив какие-либо колебания в этой цепочке (лучше всего это делать быстрым, легким щелчком по скрепке), можно просто остановить среднюю скрепку. При этом «выживет» колебание, в котором средняя скрепка покоится.

*) Ниже мы увидим, что синусоидальную стоячую волну можно представить в виде суммы двух одинаковых волн, бегущих в противоположных направлениях. Длина стоячей волны, по определению, совпадает с длиной этих бегущих волн.

Стоячие волны разных типов, в которых на всей длине ленты укладывается разное число N полуволн, называются нормальными модами колебаний (или просто модами ; это слово происходит от латинского modus, т. е. образ, способ). Моды с малыми значениями N называются низшими , а с большими — высшими . Моду с N = 1 естественно называть основной, она возбуждается легче всего. При произвольном начальном возбуждении нашей системы возбуждаются разные моды, однако высшие моды не только труднее возбуждаются, но и быстрее затухают из-за трения. Потому-то их и труднее наблюдать.

Понять, что такое моды и как они себя ведут, проще всего на модели одномерной цепочки конечной длины с закрепленными концами. Сначала посмотрим, как колеблется простейшая цепочка из двух атомов. Пусть их равновесные положения равны x 0 1= α и x 0 2= 2α, а крайние пружинки закреплены в точках x 0 0= 0 и x 0 3= 3α (см. рис. 5.1). Легко составить уравнения движения атомов.

Прежде чем это сделать, введем одно небольшое новшество в обозначениях. До сих пор нам приходилось иметь дело лишь с производными по времени, и мы их обозначали штрихом. При изучении колебаний в распределенных системах встречаются не только производные по времени, с помощью которых записываются скорости и ускорения отдельных частичек, но и производные по координате. Они характеризуют изменение отклонения при переходе от одной частицы к другой в один и тот же момент времени. Поэтому условимся обозначать производную по времени не штрихом, а точкой, а штрих сохраним для производной по координате. Теперь мы будем обозначать скорость n -гo грузика как а его ускорение как Уравнения движения грузиков можно тогда написать в - фото 109, а его ускорение — как Уравнения движения грузиков можно тогда написать в виде Действительно сила - фото 110.

Уравнения движения грузиков можно тогда написать в виде

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Многоликий солитон»

Представляем Вашему вниманию похожие книги на «Многоликий солитон» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Штейнберг - Многоликий король. Юл Бриннер
Александр Штейнберг
Александр Филиппов - Аномальная зона
Александр Филиппов
Александр Филиппов - Вся политика. Хрестоматия
Александр Филиппов
Александр Филиппов - Когда сверкает молния
Александр Филиппов
libcat.ru: книга без обложки
Александр Филиппов
Александр Филиппов - 25 лет. Лирика, песни и сказки
Александр Филиппов
Александр Филиппов - Сказка без чудес. Роман
Александр Филиппов
Александр Филиппов - Избранный
Александр Филиппов
Отзывы о книге «Многоликий солитон»

Обсуждение, отзывы о книге «Многоликий солитон» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x