Легко можно убедиться, что так и есть на самом деле [83] .
С другой стороны, при скоростях, близких к c, кинетическая энергия (как и должно быть) стремится к бесконечности. Так что все, казалось бы, и понятно и хорошо.
Тем не менее формула настораживает. И вот почему. Работа, произведенная внешними силами над телом, всегда равна разности его полной энергии в конечном и начальном состоянии. Если вся работа тратится на сообщение телу кинетической энергии, то, естественно, именно кинетическая энергия определяет рост полной энергии E k ( v ) = E полн( v ) – E полн(0).
В классической механике полная энергия покоящегося тела в большом числе случаев была несущественна. При решении задач требовалось учитывать только те формы полной энергии, которые изменяются при движении тела (например, потенциальная энергия). И в каждой конкретной механической задаче можно за начало отсчета энергии выбрать энергию покоящегося тела — считать, что эта энергия равна нулю.
Но в релятивистской механике кинетическая энергия тела всегда — разность двух членов.
Оказывается, что начало отсчета энергии почему-то не равно нулю. Можно, пока что чисто формально, каждому покоящемуся телу приписать энергию Е 0 = mc 2.
Тогда E k ( v ) = E v – E 0 = ( M – m ) c 2, где
переменная масса тела. И можно говорить, что полная энергия покоящегося тела определяется отношением Е = mc 2.
Спрашивается, что это — математическая случайность? Каприз уравнений? Чисто формальное обстоятельство? Имеет ли какой-либо физический смысл энергия mc 2, или же это «энергия» в кавычках?
Логика теории привела Эйнштейна к заключению, что энергия покоя ( Е = mc 2) — совершенно реальная физическая величина. И в каждом теле действительно сконденсирована такая энергия. Но нужно признаться, что обтекаемые слова «логика теории» скрывают и смазывают поразительно смелую логику мышления Эйнштейна, передать которую мы не в состоянии.
Этот вывод сам Эйнштейн и считал важнейшим результатом своей теории. Вот что писал он в 1905 году:
«Масса тела является мерой содержания в нем энергии; если энергия меняется на Δ E, то в ту же сторону меняется и масса на величину Δ E / c 2. Не исключено, что на телах, у которых содержание энергии может меняться в сильной степени (например, на солях радия), удастся произвести проверку теории».
Итак, каждой массе соответствует энергия, и обратно — любому виду энергии соответствует масса. Связь между ними определяется соотношением Е = mc 2. Нагретое тело имеет бóльшую массу, чем оно же, но в холодном состоянии. Напротив, остывая, отдавая каким-либо способом энергию в окружающую среду, тело теряет массу. Всякий процесс с выделением энергии связан с потерей массы, и обратно, приобретая энергию, тело или система тел одновременно приобретает и массу.
Любое выделение или поглощение энергии связано с изменением массы. Например, строго говоря, масса покоя двух атомов водорода больше массы покоя двухатомной молекулы водорода, поскольку при соединении атомов в молекулы выделяется энергия, которая и уносит с собой массу:
H + H = H 2 + Q ; 2 m н > m н2.
При любой химической реакции, идущей с выделением энергии (экзотермической), масса продуктов реакции меньше, чем масса реагирующих веществ.
Но вот перед нами эндотермическая реакция, идущая с поглощением энергии. Масса продуктов такой реакции оказывается больше, чем масса реагирующих веществ.
Самый простой пример эндотермической реакции — распад (диссоциация) молекулы водорода на атомы:
H 2 + Q = H + H ; m н2 < 2m н.
Конечно, никому не приходит в голову учитывать изменение массы при образовании молекулы водорода. Самые точные измерения не дают и намека на то, что такое изменение масс при обычных химических реакциях существует. Закон сохранения массы при химических реакциях великолепно оправдывается на опыте.
И наконец, взвешивая, скажем, кусок железа холодным и нагретым, невозможно заметить какую-либо разницу масс, хотя разница в энергии хорошо заметна.
Почему же, наблюдая при каком-то химическом (или любом другом) процессе заметную разницу в энергетических состояниях тел, мы не можем заметить изменения его массы?
Читать дальше