Ричард Фейнман - Том 2. Электромагнетизм и материя

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 2. Электромагнетизм и материя» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 2. Электромагнетизм и материя: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 2. Электромагнетизм и материя»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 2. Электромагнетизм и материя», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

но нужно помнить, что операторная алгебра немного отличается от обычной векторной. Надо всегда выдерживать правильный порядок операторов, чтобы их операции имели смысл. Тогда у вас трудностей не возникнет, если вы припомните, что оператор подчиняется тем же условиям, что и производные. То, что вы дифференцируете, должно быть поставлено справа от Порядок здесь существен.

Если помнить о порядке, то сразу ясно, что Т — это оператор, а произведение Т — это уже не «жаждущий» оператор, его жажда утолена. Это физическая величина, имеющая смысл. Он представляет собой скорость пространственного изменения Т : x -компонента Т показывает, насколько быстро Т изменяется в x-направлении. А куда направлен вектор Т ? Мы знаем, что скорость изменения Т в каком-то направлении — это компонента Т в этом направлении [см. (2.15)]. Отсюда следует, что направление Т — это то, по которому Т обладает самой длинной проекцией; иными словами, то, по которому Т меняется быстрее всего. Направление градиента Т — это направление быстрейшего подъема величины Т .

§ 5. Операции с ∇

Можно ли с векторным оператором производить другие алгебраические действия? Попробуем скомбинировать его с вектором. Из двух векторов можно составить скалярное произведение, причем двоякого рода:

Первое выражение пока что ничего не означает это все еще оператор - фото 62

Первое выражение пока что ничего не означает — это все еще оператор. Окончательный смысл его зависит от того, на что он будет действовать. А второе произведение — это некое скалярное поле (потому что А· В— всегда скаляр).

Попробуем составить скалярное произведение на известное поле, скажем на h. Распишем покомпонентно

232 или 233 Эта сумма инвариантна относительно преобразования координат - фото 63(2.32)

или

233 Эта сумма инвариантна относительно преобразования координат Если - фото 64(2.33)

Эта сумма инвариантна относительно преобразования координат. Если выбрать другую систему (отмеченную штрихами), то получилось бы [5] Мы рассматриваем h как физическую величину, зависящую от положения в пространстве, а не как заданную математически функцию трех переменных. Когда h «дифференцируется» по х, у и z или по х', у' и z', то математическое выражение для h должно быть предварительно выражено в виде функции соответствующих переменных. Поэтому в новой системе координат мы не отмечаем h штрихом.

234 а это то же самое число которое получилось бы и из 233 хотя с - фото 65(2.34)

а это — то же самое число, которое получилось бы и из (2.33), хотя с виду оно выглядит иначе, т. е.

235 в любой точке пространства Итак h это скалярное поле и оно должно - фото 66(2.35)

в любой точке пространства. Итак, · h— это скалярное поле, и оно должно представить собой некоторую физическую величину. Вы должны понимать, что комбинация производных в · hимеет довольно специальный вид. Могут быть и другие комбинации всяческого вида, скажем dh y / dx , которые не являются ни скалярами, ни компонентами векторов.

Скалярная величина ·(Вектор) очень широко применяется в физике. Ей присвоили имя «дивергенция», или «расходимость». Например,

236 Можно было бы как и для T описать физический смысл h Но мы - фото 67(2.36)

Можно было бы, как и для T, описать физический смысл · h. Но мы отложим это до лучших времен.

Посмотрим сначала, что еще можно испечь из векторного оператора . Как насчет векторного произведения? Можно надеяться, что

237 Компоненты этого вектора можно написать пользуясь обычным правилом для - фото 68(2.37)

Компоненты этого вектора можно написать, пользуясь обычным правилом для векторного произведения [см. (2.2)]:

238 Подобно этому 239 и 240 Комбинацию hназывают ротор пишут - фото 69(2.38)

Подобно этому,

239 и 240 Комбинацию hназывают ротор пишут rot h или редко - фото 70(2.39)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 2. Электромагнетизм и материя»

Представляем Вашему вниманию похожие книги на «Том 2. Электромагнетизм и материя» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 2. Электромагнетизм и материя»

Обсуждение, отзывы о книге «Том 2. Электромагнетизм и материя» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x