Ричард Фейнман - Том 1. Механика, излучение и теплота

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 1. Механика, излучение и теплота» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 1. Механика, излучение и теплота: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 1. Механика, излучение и теплота»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 1. Механика, излучение и теплота — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 1. Механика, излучение и теплота», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чилийское землетрясение в мае 1960 г. произвело такой «шум», что его эхо много раз обошло вокруг Земли. Как раз к этому времени были изготовлены новые высокочувствительные сейсмографы, с помощью которых определялись основные гармоники Земли и сравнивались с величинами, вычисленными из теории звука по известным скоростям, найденным из других независимых землетрясений. Результат этого эксперимента показан на фиг. 51.7, где отложена сила сигнала в зависимости от его частоты ( фурье - анализ ).

Фиг 517 Зависимость силы от частоты зарегистрированная сейсмографом в - фото 1366

Фиг. 51.7. Зависимость силы от частоты, зарегистрированная сейсмографом в городах Нака (Перу) и Изабелла (Калифорния). Согласованность (или когерентность) обозначает степень связанности сигналов, регистрируемых этими станциями.

Заметьте, что одни из принимаемых частот оказывались более сильными, чем другие; наблюдались очень четкие максимумы. Это и есть собственные частоты Земли, поскольку они являются главными частотами ее колебаний.

Иными словами, если все движение Земли сводится к суперпозиции множества различных гармоник, то можно надеяться, что запись нерегулярных толчков на любой станции даст одну и ту же суперпозицию многих частот. Если проанализировать это в терминах частот, то мы сможем определить характеристические частоты Земли. Тонкие вертикальные линии на рисунке изображают рассчитанные частоты, и мы видим замечательное согласие, убеждающее нас, что теория звука вполне работает и внутри Земли.

Очень интересный факт обнаруживается на фиг. 51.8, где представлены очень точные измерения (с еще большим разрешением) низшей эллипсоидальной гармоники.

Фиг 518 Фурьеанализ записи высокочувствительного сейсмографа на станции - фото 1367

Фиг. 51.8. Фурье-анализ записи высокочувствительного сейсмографа на станции Изабелла. Хорошо виден спектральный дублет.

Заметьте, что здесь не один, а два немного отличающихся максимума: первый — с периодом 54,7 мин и второй — 53,1 мин . Природа этих двух максимумов не была известна, когда они были обнаружены, хотя с тех пор ее могли найти. Существуют по крайней мере два правдоподобных объяснения. Одно из них — это возможная асимметрия в распределении вещества Земли, которая может дать два подобных максимума. Другое, еще более интересное объяснение состоит в следующем. Вообразите волны, идущие от источника вокруг Земли в двух направлениях. Если мы в уравнениях движения учтем эффект вращения Земли, которым обычно пренебрегали при анализе, то скорости этих волн окажутся разными. Движение во вращающейся системе из-за действия кориолисовой силы изменяется, и это может вызвать наблюдаемое расщепление.

Коротко о методе получения этих кривых. На сейсмографе мы записываем не зависимость амплитуды от частоты, а перемещение как функцию времени, причем всегда какой-то очень неправильной и причудливой формы.

Чтобы найти из нее долю различных синусообразных волн для всех частот, мы уже знаем, что нужно делать. Фокус состоит в умножении полученных данных на синусообразную волну данной частоты и интегрировании, т. е. усреднении; при этом усреднении все другие частоты исчезают.

Таким образом, на рисунках фактически показаны графики интегралов от произведения полученных данных на синусообразные волны с различным числом периодов в минуту.

§ 4. Поверхностные волны

Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,— это волны на поверхности воды. Вы скоро убедитесь, что более неудачного примера придумать трудно, ибо они нисколько не похожи ни на звук, ни на свет; здесь собрались все трудности, которые только могут быть в волнах. Давайте начнем с длинных волн на глубокой воде. Если считать океан бесконечно глубоким и на его поверхности происходят какие-то возмущения, то возникнут волны. Вообще говоря, возможны любые возмущения, но синусоидальное движение с очень небольшим возмущением дает волны, напоминающие обычные гладкие океанские волны, идущие к берегу. Вода, разумеется, в среднем остается на месте, а движутся сами волны. Что ж это за движение — поперечное или продольное? Оно не может быть ни тем, ни другим: ни поперечным, ни продольным. Хотя в каждом данном месте горбы чередуются со впадинами, оно не может быть движением вверх и вниз просто из-за закона сохранения количества воды. Куда должна деваться вода из впадины? Ведь она же практически несжимаема. Скорость волн сжатия, т. е. звука в воде, во много раз больше: мы сейчас их не рассматриваем. Итак, для нас сейчас вода несжимаема, поэтому при образовании впадины вода из этого места может двигаться только в стороны. Так оно и получается на самом деле: частички воды вблизи поверхности будут двигаться приблизительно по окружности. Как-нибудь, когда вы будете нежиться на воде, лежа на круге, и придет такой гладкий вал, посмотрите на соседние предметы и вы увидите, что они движутся по окружностям. Так что картина получается неожиданная: здесь мы имеем дело со смесью продольных и поперечных волн. С увеличением глубины круги уменьшаются, пока на достаточной глубине от них ничего не останется (фиг. 51.9).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 1. Механика, излучение и теплота»

Представляем Вашему вниманию похожие книги на «Том 1. Механика, излучение и теплота» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 1. Механика, излучение и теплота»

Обсуждение, отзывы о книге «Том 1. Механика, излучение и теплота» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x