Итак, создать колебания с постоянной амплитудой в нашей системе можно двумя способами: либо оба маятника качаются все время вместе с одной частотой, либо они качаются в противоположных направлениях с несколько большей частотой.
Действительное же движение системы, поскольку она линейна, можно представить в виде суперпозиции этих двух способов. (Напомним, что предметом этой главы являются эффекты сложения двух движений с различными частотами.) Давайте подумаем, что произошло бы, если бы мы сложили эти два решения. Если в момент t=0 запустить оба эти движения (причем с равными амплитудами и одинаковой фазой), то сумма этих двух движений означает, что один маятник, на который каким-то образом воздействовало первое движение и противоположным образом воздействовало второе, должен оставаться на месте, тогда как другой маятник, двигаясь одинаково при обоих способах движения, качается с удвоенной амплитудой. С течением времени, однако, оба эти основных движения , существуя независимо одно от другого, медленно сдвигаются по фазе одно относительно другого. Это означает, что после достаточно большого промежутка времени, такого, что в первом движении произойдет, скажем, 900,5 колебания, а во втором — только 900, относительная фаза станет как раз обратной по отношению к тому, что было вначале. Иначе говоря, маятник, имевший вначале большую амплитуду, остановится, тогда как маятник, неподвижный вначале, начнет качаться изо всех сил!
Итак, мы видим, что такое сложное движение можно рассматривать в рамках идеи резонансов, когда энергия от одного маятника переходит к другому, или как суперпозицию двух движений с постоянной амплитудой и различными частотами.
Глава 49 СОБСТВЕННЫЕ КОЛЕБАНИЯ
В этой главе мы рассмотрим ряд замечательных явлений, возникающих в результате «заключения» волны в некоторую ограниченную область. Сначала нам придется установить несколько частных фактов, относящихся, например, к колебанию струны, а затем, обобщив эти факты, мы придем, по-видимому, к наиболее далеко идущему принципу математической физики.
Первый пример волн в ограниченном пространстве — это волны в пространстве, ограниченном с одной стороны. Давайте возьмем простой случай одномерной волны на струне. Можно было бы рассмотреть плоскую звуковую волну в пространстве, ограниченном с одной стороны стенкой, или какие-то другие примеры той же природы, но для наших теперешних целей вполне достаточно простой струны. Предположим, что один конец струны закреплен, ну, например, вмурован в «абсолютно жесткую» стенку. Математически это можно описать, указав, что перемещение струны у в точке x=0 должно быть нулем, ибо конец струны не может двигаться. Далее, если бы в этом деле не участвовала стенка, то, как мы знаем, общее решение, описывающее движение струны, можно было бы представить в виде суммы двух функций F ( x - ct ) и G ( x + ct ), причем первая описывает волну, бегущую по струне в одну сторону, а вторая — в другую, так что
(49.1)
будет общим решением для любой струны. Но нам, помимо этого, нужно еще удовлетворить условию неподвижности одного конца. Если в уравнении (49.1) мы положим х =0 и посмотрим, какие будут у в любой момент t , то получим y = F (- ct )+ G (+ ct ). Но эта сумма должна быть нулем в любой момент времени, а это означает, что функция G (+ ct ) должна быть равна - F (- ct ). Другими словами, функция G от некоторой величины должна быть равна функции - F от той же величины со знаком минус. Подставляя снова полученный результат в уравнение (49.1), находим решение поставленной задачи:
(49.2)
Ясно, что это выражение всегда даст y=0, если х положить равным нулю.
На фиг. 49.1 представлена волна, идущая в отрицательном x-направлении вблизи точки х =0, и гипотетическая волна, идущая в противоположном направлении с обратным знаком и с другой стороны от начала координат.

Читать дальше