Ричард Фейнман - Том 1. Механика, излучение и теплота

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 1. Механика, излучение и теплота» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 1. Механика, излучение и теплота: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 1. Механика, излучение и теплота»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 1. Механика, излучение и теплота — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 1. Механика, излучение и теплота», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

419 Теперь почти вся кривая загнана в область около ωω 0 Фактически мы - фото 1054(41.9)

Теперь почти вся кривая загнана в область около ω=ω 0. (Фактически мы не должны делать никаких приближений, но легче иметь дело с интегралом, в котором подынтегральное выражение несколько проще.) Если умножить интенсивность в данном интервале частот на эффективное сечение рассеяния, то получится энергия, рассеянная в интервале dω. Полная рассеянная энергия — это интеграл по всем ω. Таким образом,

4110 Теперь мы положим dW s dt 3γ kT Но почему здесь стоит 3 Потому - фото 1055(41.10)

Теперь мы положим dW s / dt =3γ kT . Но почему здесь стоит 3? Потому что в гл. 32 мы предполагали, что свет поляризован так, что может раскачивать осциллятор. Если бы мы использовали осциллятор, способный раскачиваться только в одном направлении, а свет был бы, скажем, поляризован неверно, то он не рассеивался бы совсем. Поэтому мы должны либо усреднить эффективное сечение рассеяния на осцилляторе, способном раскачиваться только в одном направлении, по всем направлениям падающих пучков и поляризации света в пучке, либо, что легче сделать, представить себе, что наш осциллятор послушно следует за полем, каким бы оно ни было там, где он находится. Такой осциллятор, который одинаково легко раскачивается в любом из трех направлений, имеет среднюю энергию 3 kT , потому что у него 3 степени свободы. А раз 3 степени свободы, то надо писать 3γ kT .

Займемся теперь интегралом. Предположим, что неизвестное спектральное распределение света I(ω) — это плавная кривая, которая в той узкой области частот, где σ sимеет острый максимум, меняется не слишком сильно (фиг. 41.3).

Фиг 413 Сомножители подынтегрального выражения 4110 Пик это - фото 1056

Фиг. 41.3. Сомножители подынтегрального выражения (41.10). Пик — это резонансная кривая 1/[(ω-ω 0 ) 2 +(γ 2 /4)]. Множитель I(ω) можно с хорошим приближением заменить на I(ω 0 ).

Тогда сколько-нибудь существенный вклад в интеграл дают только частоты, близкие к ω 0и отстоящие от нее на очень малую величину γ. Поэтому, хотя I(ω) неизвестная и, может быть, сложная функция, важно только ее поведение около ω=ω 0и можно заменить плавную кривую еще более ровной — «постоянной» — всюду одной высоты. Иначе говоря, мы просто вынесем I(ω) из-под знака интеграла и назовем это I(ω 0). Вынесем за интеграл и остальные постоянные и тогда получим

4111 Интеграл берется от 0 до но 0 отстоит так далеко от ω 0 что - фото 1057(41.11)

Интеграл берется от 0 до ∞, но 0 отстоит так далеко от ω 0, что кривая за это время идет почти вдоль оси абсцисс, поэтому заменим 0 на -∞, разница небольшая, а интеграл взять легче. Интеграл вида ∫ dx /( x 2+ а 2) приводит к арктангенсу. Если взглянуть в справочник, то мы увидим, что он равен π/α. Итак, для нашего случая это 2π/γ. После небольших манипуляций мы получаем

4112 Затем мы подставим сюда формулу 416 для γ мы уже не будем - фото 1058(41.12)

Затем мы подставим сюда формулу (41.6) для γ (мы уже не будем стараться писать ω 0; раз это верно для любой ω 0, то можно назвать ее просто ω), и формула для I(ω) примет вид

4113 Она и определяет распределение света в горячей печке Это так - фото 1059(41.13)

Она и определяет распределение света в горячей печке. Это так называемое излучение абсолютно черного тела . Черного потому, что, если заглянуть в топку печки при абсолютном нуле, она будет черной.

Формула (41.13) задает распределение энергии излучения внутри ящика при температуре Т согласно классической теории. Отметим сначала замечательную особенность этого выражения. Заряд осциллятора, масса осциллятора, все частные его свойства выпали из формулы; ведь если мы достигли равновесия с одним осциллятором, мы должны позаботиться о равновесии и с любым другим осциллятором другой массы, иначе будут неприятности. Таким образом, это важный способ проверки нашей теоремы о том, что равновесие зависит только от температуры , а не от того, что приводит к равновесию. Теперь можно начертить кривую I(ω) (фиг. 41.4).

Фиг 414 Распределение интенсивности излучения черного тела при двух - фото 1060

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 1. Механика, излучение и теплота»

Представляем Вашему вниманию похожие книги на «Том 1. Механика, излучение и теплота» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 1. Механика, излучение и теплота»

Обсуждение, отзывы о книге «Том 1. Механика, излучение и теплота» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x