There are two ways to look at a space-time that satisfies Einstein’s equations: either as a structure obtained from initial data that have been (somehow) obtained in a form that satisfies the constraints and then built by the more or less conventional evolution equations, or as a structure that satisfies everywhere the constraints however we choose to draw the coordinate lines. In the second way of looking at space-time, conventional evolution does not come into the picture at all. Much suggests that this is the more fundamental way of looking at Einstein’s equations (see, in particular, Kuchaf’s beautiful 1992 paper).The connection with my timeless way of thinking about general relativity is expressed by the fact that the three constraint equations containing only first derivatives of the evolution variable are precisely the expression of the fact that a best-matching condition holds along the corresponding ‘initial’ hypersurface, while the fourth constraint equation, containing no derivatives of the evolution variable, expresses the fact that proper time is determined in geometrodynamics as a local analogue of the astronomers’ ephemeris time. It is this complete freedom to draw coordinate lines as we wish and, at least formally, to attempt evolution in any direction, that makes me feel that the second alternative envisaged in the Platonia for Relativity note is appropriate. I think it is also very significant that Einstein’s equations have the same form whatever the signature of space-time. The signature is not part of the equations, it is a condition normally imposed on the solutions. The demonstration that Einstein’s general relativity is the unique theory that satisfies the criterion (mentioned at the end of this section) of a higher four-dimensional symmetry was given by Hojman et al . (1976).
1 mentioned on p. 346 at the end of the notes on Chapter 4 my recent discovery of a way to create dynamical theories of the universe in which absolute distance is no longer relevant. My Irish colleague Niall Ó Murchadha, of University College Cork, and I are currently working on the application of the new idea to theories like general relativity, in which geometry is dynamical. There is a possibility that this work will not only give new insight into the structure of general relativity, in which a kind of residual absolute distance does play a role, but also lead to a rival alternative theory in which no distance of any kind occurs.
The key step is to extend the principle of best matching from superspace to so-called conformal superspace. In the context of geometrodynamics, this is analogous to the passage from Triangle Land to Shape Space as described in Box 3. However, whereas in Box 3 it is only the overall scale that is removed, and it is still meaningful to talk about the ratios of lengths of sides, the transition to conformal superspace is much more drastic and removes from physics all trace of distance comparison at spatially separated points.
In more technical terms, for people in the know, each point of conformal superspace has a given conformal geometry and is represented by the equivalence class of metrics related by position-dependent scale transformations.
The potentially most interesting implication of this work is that it could resolve the severe problem of the criss-cross fabric of space-time illustrated by Figure 31. At the level of conformal superspace, the universe passes through a unique sequence of states. For latest developments, please consult my website (www.julianbarbour.com) and the final entries in these notes and the notes on p.358.
PART 4
Quantum Mechanics and Quantum Cosmology
If the difference between Newtonian and Einsteinian physics is great, quantum mechanics seems separated from both by a chasm. Most accounts of it, however, do not question the framework, essentially absolute space and time, in which it was formulated. They describe how very small systems – mostly atoms and molecules – behave in an external framework. This may make quantum mechanics appear more baffling than need be.
If quantum mechanics is universally true and applies not only to atoms and molecules but also to apples, the Moon, the stars and ultimately the universe, then we ought to consider quantum cosmology . What does the quantum mechanics of the universe look like? It cannot be formulated in an external framework. Like classical physics, quantum cosmology needs a description without a framework. We shall see that many apparent differences between classical and quantum mechanics then appear in a different light. What remains is one huge difference. We shall soon begin to get to grips with it.
CHAPTER 12
The Discovery of Quantum Mechanics
About a hundred years ago, a dualistic picture of the world took shape. The electron had just been discovered, and it was believed that two quite different kinds of thing existed: charged particles and the electromagnetic field. Particles were pictured as little billiard balls, possessing always definite positions and velocities, whereas electromagnetic fields permeated space and behaved like waves. Waves interfere, and recognition of this had led Thomas Young to the wave theory of light (Figure 22).
By the end of the nineteenth century, the evidence for the wave theory of light was very strong. However, it was precisely the failure of light, as electromagnetic radiation, to behave in all respects in a continuous wavelike manner that led first Max Planck in 1900 and then Einstein in 1905 to the revolutionary proposals that eventually spawned quantum mechanics. A problem had arisen in the theory of ovens, in which radiation is in thermal equilibrium with the oven walls at some temperature. Boltzmann’s statistical methods, which had worked so well for gases, suggested that this could not happen, and that to heat an oven an infinite amount of energy would be needed. The point is that radiation can have any wavelength, so radiation with infinitely many different wavelengths should be present in the oven. At the same time, the statistical arguments suggested that, on average, the same finite amount of energy should be associated with the radiation when in equilibrium. Therefore there would be an infinite amount of energy in the oven – clearly an impossibility. Baking ovens broke the laws of physics! Planck was driven to assume that energy is transferred between the oven walls and the radiation not continuously but in ‘lumps’, or ‘quanta’.
Accordingly, he introduced a new constant of nature, the quantum of action , now called Planck’s constant , because the same kind of quantity appears in the principle of least action. Until Planck’s work, it had been universally assumed that all physical quantities vary continuously. But in the quantum world, action is always ‘quantized’: any action ever measured has one of the values 0, ½ h , h , ¾ h , 2 h , .... Here h is Planck’s constant. (The fact that half-integer values of h , i.e. ½ h , ¾ h , ..., can occur in nature was established long after Planck’s original discovery. By then it was too late to take half the original quantity as the basic unit.) The value of h is tiny.
Most people are familiar with the speed of light, which goes seven times round the world in a second or to the Moon and back in two and a half seconds. The smallness of Planck’s constant is less well known. Comparison with the number of atoms in a pea brings it home. Angular momentum is an action and can be increased only in ‘jerks’ that are multiples of h . Suppose we thread a pea on a string 30cm long and swing it in a circle once a second. Then the pea’s action is about 10 32times h . As we saw, the atoms in a pea, represented as dots a millimetre apart, would comfortably cover the British Isles to a depth of a kilometre. The number 10 32, represented in the same way, would fill the Earth – not once but a hundred times. Double the speed of rotation, and you will have put the same number of action quanta into the pea’s angular momentum. It is hardly surprising that you do not notice the individual ‘jerks’ of the hs as they are added.
Читать дальше