Статическое и динамическое трение
Смычок и скрипичная струна взаимодействуют между собой посредством трения. Обычно считается, что трение – это помеха, поскольку оно приводит к потере энергии, преобразуя часть ее в тепло. Например, значительная часть энергии, израсходованной на разгон автомобиля, теряется из-за трения между различными его частями. Тем не менее тот же автомобиль разгоняется именно благодаря трению между шинами и асфальтом, благодаря трению мы можем ходить (для того чтобы убедиться в этом, достаточно прогуляться по льду)…
Различают два вида трения: статическое – между двумя контактирующими друг с другом неподвижными объектами и динамическое – между двумя объектами, движущимися относительно друг друга. Динамическое трение этому движению препятствует (см. главу 11, врезку «Законы динамического трения»). Замечательно, что возникающее при скольжении смычка по струне трение является поочередно то статическим, то динамическим! Когда скрипач начинает играть, он кладет смычок на неподвижную струну и в дальнейшем оказывает на нее давление, которое мы примем за постоянное. В течение короткого времени перемещение смычка со скоростью v 0 приводит к тому, что струна, следуя за ним, начинает двигаться с той же скоростью. Эта фаза сцепления обусловлена статическим трением между смычком и струной, сила которого увлекает струну в направлении движения смычка. В свою очередь, возрастающее натяжение струны приводит к появлению силы, приложенной к смычку и направленной противоположно его движению. Для того чтобы струна следовала за смычком, обе эти силы в каждый момент времени должны уравновешивать друг друга (илл. 5a).
5. a.Статическое трение смычка о скрипичную струну. Смычок движется вверх. Статическая сила трения f →уравновешивает результирующую силу F →натяжения струны: точка ее контакта со смычком A остается неподвижной по отношению к смычку. b.Когда напряжение струны превышает предельно возможное значение силы статического трения, то трение становится динамическим. Точка контакта A теперь перемещается вдоль смычка, однако ее расположение x 0 по отношению к корпусу скрипки фиксировано. Динамическая сила трения f →уравновешивает мгновенное значение результирующей силы натяжения струны F →
Эта первая фаза непродолжительна: вызванная натяжением струны сила, по мере того как струна отклоняется от положения равновесия, быстро возрастает и вскоре достигает величины максимально возможного статического трения [10] Существование максимального значения силы статического трения (для заданного значения давления, которое скрипач оказывает смычком на струну) является основным законом этого типа трения.
. С этого момента статическое трение больше не может компенсировать силу натяжения: смычок и струна расцепляются, струна возвращается в положение равновесия. В этой, второй, фазе «скольжения» на струну действует динамическая сила трения, которая намного меньше статической, и она совершает колебательное движение, подобно выведенной из положения равновесия пружине. При этом в некоторый момент времени, пройдя точку максимального удаления от положения равновесия, струна вновь начинает двигаться в том же направлении, что и смычок. Ее скорость увеличивается и в конечном итоге сравнивается со скоростью смычка: в этот момент происходит «сцепка», и система «струна – смычок» вновь оказывается в своей первой фазе. Она длится до тех пор, пока сила натяжения струны снова не становится слишком большой и струна не срывается со смычка. Если длина колеблющейся части струны такова, что скрипка звучит на ноте ля (частота 435 Гц), то между началами двух «фаз сцепления» проходит одна 1/435 доля секунды. Отметим, что энергию, необходимую для поддержания колебательного движения, смычок передает струне тогда, когда они имеют одинаковую скорость. Таким образом, взаимодействие смычка со струной состоит из чередующихся фаз сцепления и скольжения (илл. 6).
6. a.Скорость скрипичной струны в точке соприкосновения со смычком в зависимости от времени (пунктир – приближенное значение; сплошная линия – фактическая кривая). Как видно, значение скорости резко изменяется между фазами сцепления и скольжения, что сложно объяснить в рамках нашей очень упрощенной модели. b.Чередование фаз сцепления и скольжения приводит к изменению величины поперечной силы, с которой струна действует на подгрифок (передающий, в свою очередь, вибрацию в резонатор, основной источник звука). (По X. Boutillon, Acoustique des instruments de musique , 2013)
Читать дальше
Конец ознакомительного отрывка
Купить книгу