Согласно этой теории ядерное вещество, то есть вещество, состоящее из нейтронов и протонов, может находиться в различных состояниях - в обычном, в котором оно находится в атомных ядрах, и в необычном, более плотном состоянии (а может быть, и в нескольких более плотных состояниях). Это могло бы означать, что наряду с обычными ядрами существуют аномальные ядра с другими свойствами (с другой плотностью, другим отношением заряда к массе, с другой энергией связи нейтронов и протонов).
Это явление тесно связано с другим, как часто бывает в теоретической физике, на первый взгляд очень далеким, - с перестройкой вакуума в сильных полях.
В сильных полях вакуум перестраивается - в нем образуются частицы, или, точнее, появляется поле частиц определенного типа, в зависимости от характера внешнего поля. Такая перестройка подобна фазовому переходу в обычном веществе, например переходу металла в сверхпроводящее состояние. Поэтому, прежде чем изучать такой сложный объект, как вакуум, полезно вспомнить, что такое обычные фазовые переходы.
Фазовые переходы
Как известно, одно и то же вещество в зависимости от внешних условий (температуры, давления, магнитного или электрического поля, приложенного к телу, и так далее), может находиться в разных состояниях, разных «фазах». Соответствующий переход называется «фазовым переходом». Например, лед (твердая фаза воды) при температуре ниже нуля, но при достаточном давлении плавится - это означает, что вода из твердой фазы переходит в жидкую. Помимо переходов из твердого в жидкое или из жидкого в газообразное состояние, существует множество самых различных фазовых переходов. Это, например, переходы металлов из нормального состояния в сверхпроводящее, из ферромагнитного - в парамагнитное; переходы в твердых телах, связанные с изменением симметрии кристаллической решетки; переход гелия из нормального в сверхтекучее состоя
208
ние и так далее. И все это множество явлений описывается единой теорией, основы которой были заложены Л. Д. Ландау в 1937 году. С тех пор теория фазовых переходов обогатилась многими новыми идеями и превратилась в одну из интереснейших областей теоретической физики с большим количеством практических применений.
Что же отличает одну фазу от другой и что объединяет все эти разнородные явления? Оказывается, всегда существует некая величина, которая называется «параметром порядка» и которая равна нулю в одной фазе и отлична от нуля в другой. В случае перехода из твердого состояния в жидкое в качестве параметра можно взять отношение числа атомов, расположенных в правильном порядке (в кристаллической решетке), к полному числу атомов. Ниже точки плавления это отношение равно единице, выше - нулю. При этом переходе параметр порядка изменяется скачком.
В таких случаях переход называется «переходом 1-го рода».
Рассмотрим переход из ферромагнитного состояния в парамагнитное. Ферромагнитное состояние - такое, в котором находится вещество в магните. При этом магнитные моменты отдельных атомов имеют преимущественное направление - большинство магнитных моментов расположено вдоль оси магнита. По мере нагревания магнита тепловое движение все больше и больше разбрасывает магнитные моменты по разным направлениям, и при некоторой температуре средний магнитный момент атомов вдоль оси магнита обращается в нуль. Значит, вещество перешло в парамагнитное состояние, в котором магнитные моменты атомов ориентированы беспорядочно. При переходе из ферромагнитного состояния в парамагнитное роль параметра порядка играет среднее значение проекции магнитного момента на ось намагничивания. В точке перехода эта величина обращается в нуль и остается нулем после перехода в парамагнитное состояние.
Таким образом, параметр порядка не испытывает скачка в точке фазового перехода. Такой переход называется «переходом 2-го рода».
Как мы увидим, перестройка вакуума во внешних полях тоже представляет собой фазовый переход 2-го рода. Роль параметра порядка играет величина конден-сатного поля, которое возникает после перестройки.
Фазовые переходы вакуума
Как изменяется вакуум в присутствии внешнего поля, то есть поля, создаваемого внесенными в вакуум частицами? Небольшая перестройка вакуума происходит даже в слабых полях. Нас будет интересовать перестройка вакуума, внезапно наступающая при достижении некоторого критического значения внешнего поля, перестройка, вызываемая возможностью самопроизвольного рождения частиц определенного типа.
Читать дальше