Рассмотрим столкновение двух движущихся навстречу протонов с энергией, много большей, чем энергия их покоя. Что произойдет при их столкновении? Как показывает опыт, при таком столкновении возникают два снопа частиц, летящих в направлении каждого из протонов. Количество частиц в этих снопах растет с увеличением энергии протонов. Такие снопы наблюдаются в большом количестве на фотопластинках при изучении космических лучей. Их видят и в лабораторных условиях на ускорителях большой энергии.
Каково поперечное сечение при этом процессе? Так как длина волны сталкивающихся частиц очень мала, мы вправе ожидать, что сечение определяется геометри-
Ческими размерами области взаимодействия двух протоков. Но, как показывает опыт, сечение гораздо больше; оно растет с увеличением энергии и может как угодно превысить площадь геометрических размеров. В чем причина этого явления? Все объясняется виртуальными частицами, которыми наполнен вакуум.
Простые теоретические вычисления показывают, что реальную частицу большой энергии сопровождает облако виртуальных частиц. Чем больше энергия частицы, тем больше частиц в облаке и тем больше поперечные размеры этого скопища виртуальных частиц. Чем больше энергия частицы, тем легче сопровождающие частицы сделать реальными. Достаточно краем облака задеть другую реальную частицу, как все виртуальные частицы станут реальными. Поэтому и сечение растет с энергией.
Мерцание геометрии
Теория тяготения Эйнштейна предсказывает еще одно замечательное свойство вакуума: гравитационное поле вблизи тяжелых тел изменяет геометрические свойства пространства - вблизи Солнца геометрия отклоняется от евклидовой, которую мы учим в школе, сумма углов треугольника хоть и мало, но отличается от 180 градусов, отношение длины окружности к радиусу - от 2\pi; линия кратчайшего расстояния между двумя точками отличается от прямой, проходящей через них, - эти изменения проявляются на опыте, лучи далеких звезд, проходящие вблизи Солнца, искривляются.
Что получится, если к гравитационному полю применить квантовую механику, подобно тому как это было сделано для электромагнитного поля?
Существуют нулевые колебания гравитационного поля, аналогичные электромагнитным. Но присутствие гравитационного поля, как мы только что говорили, означает изменение геометрии пространства. Квантование тяготения приводит к нулевым колебаниям геометрических свойств. Отношение длины окружности к радиусу колеблется около евклидова значения; чем меньше масштаб, чем меньше радиус кружочка, тем большими делаются отклонения. Колебания геометрии ничтожно малы даже для очень малых размеров. Но можно указать такой масштаб, при котором не останется ничего похожего на евклидову геометрию.
Оценим порядок длины волны нулевых гравитационных колебаний, при которой геометрия делается совсем непохожей на евклидову. Степень отклонения \zeta геометрии от евклидовой в гравитационном поле определяется отношением гравитационного потенциала \varphi и квадрата с: \zeta = \varphi /с2. Когда \zeta \ll 1 геометрия близка к евкли-
довой; при \zeta ~1 всякое сходство исчезает. Энергия колебания масштаба l равна Е = h \omega ~hc/l (c/l -порядок частоты колебаний). Гравитационный потенциал,
создаваемый массой m на такой длине есть \varphi =Gm/l
где G - постоянная всемирного тяготения. Вместо m следует подставить массу, которой согласно формуле Эйнштейна соответствует энергия Е (m = Е/с2). Получаем \varphi =G E/(lс2)=G h/(cl2) Разделив это выражение на с2, получим величину \zeta. Приравняв \zeta=1, найдем ту длину, на которой полностью искажается евклидова геометрия:
P=sqrt(Gh/c)/c.
Эта величина называется «планковской длиной». Подставляя значения с, G, h (в системе CGS с = 31010; G = 6,710-8; h=10-27), получим: Р =210-33 см.
Несмотря на такую малость, эта длина, по-видимому, сыграет важную роль в будущей теории, которая объединит гравитацию со всеми остальными взаимодействиями - электромагнитным, сильным и слабым.
У вакуума есть еще одно свойство: в сильных полях виртуальные частицы превращаются в реальные - вакуум перестраивается. Но об этом в следующем разделе.
НЕУСТОЙЧИВОСТЬ ВАКУУМА И НЕОБЫЧНЫЕ СОСТОЯНИЯ ЯДЕРНОГО ВЕЩЕСТВА
Лучший жребий физической теории - послужить основой для более общей теории, оставаясь в ней предельным случаем.
А. Эйнштейн
Явления, о которых пойдет речь, еще не обнаружены на опыте. Они пока существуют только на бумаге
как результат теоретических расчетов и оценок. Но оценки эти достаточно правдоподобны, а явления настолько важны, что прилагаются серьезные усилия, чтобы подтвердить или опровергнуть предсказания теории.
Читать дальше