Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1973, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
  • Автор:
  • Издательство:
    Мир
  • Жанр:
  • Год:
    1973
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг книги:
    4.5 / 5. Голосов: 2
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Фиг 207 Другие волновые картины атомных моделей Фиг 208 Фиг 209 - фото 197

Фиг. 207. Другие волновые картины атомных моделей.

Фиг 208 Фиг 209 Волновые картины в ядрах Новое рассмотрение атомов - фото 198

Фиг. 208.

Фиг 209 Волновые картины в ядрах Новое рассмотрение атомов оказалось - фото 199

Фиг. 209. Волновые картины в ядрах.

Новое рассмотрение атомов оказалось точным, но отнюдь не простым. При более детальной разработке идея о волнах становится более плодотворной, но сами волны от этого не становятся более реальными. Для их описания мы имеем хороший математический аппарат, но не имеем модели для интерпретации результатов. По существу модели оказались обреченными на неудачу, поскольку они часто вводят в заблуждение. Наша картина атомов и их поведения осталась математической моделью — сложной моделью с зацепляющимися друг за друга частями, которая приводит к плодотворным результатам. Поэтому мы вверяем атомную теорию математикам. Они развили новые средства, например сложную алгебру с нетривиальными правилами [204]. Несмотря на странность методов, результаты превосходны и во всех перечисленных ниже пунктах подтверждаются экспериментальными проверками:

Волновой формализм дает для сложных атомов уровни энергии и вероятности нахождения электрона на каждом уровне; это приводит к успешным предсказаниям частот спектральных линий и их яркостей.

При описании молекул как комбинации атомов волновой формализм предсказывает химические энергии и силы поверхностного натяжения. Он даже предсказывает углы и расстояния между атомами в длинных молекулярных цепях, что подтверждается измерениями с помощью рентгеновских лучей.

Вычисленные вероятности нахождения электрона в некоторой области определенного атома согласуются с измерениями рассеяния потока электронов на атомных электронах в мишени из таких атомов.

Кинетическая энергия α -частиц сообщает нам их длину волны. Это дает вероятность их просачивания через ядерный барьер, что позволяет с определенным успехом предсказать период полураспада радиоактивного ядра.

Но нам приходится оставить аппарат всей этой плодотворной теории в математической форме: мы не можем предложить хорошей модели, в которой все казалось бы «разумным». Мы возвращаемся к детской аргументации «потому что это так» или к взгляду древних греков «это в природе вещей». Как и у древних греков, у наших физиков-атомников есть четкие правила — правила квантования и симметрии, правила, которые работают, — но для них нет первопричины. Сформулировав несколько правил, сказать: «Здесь записано, как ведет себя природа», — вместо того, чтобы во всем обвинять сотни демонов разных мастей, — это все-таки хорошая наука. С этих пор люди, работающие сейчас в физике, оказались разделенными на занимающихся теорией и занимающихся экспериментом. Экспериментатор продолжает исследовать, проверять предсказания, искать новые явления, часто с помощью большой дорогостоящей аппаратуры, для своих непрямых атак на субмикроскопический мир атомов и ядер. Физик-теоретик использует надежные математические методы, избегая думать на языке моделей, к которым склонны более практичные умы. Среди тех и других мы находим великих мыслителей и мудрейших ученых, которые могут объединять теорию и эксперимент и продвигать вперед наше понимание природы.

Принцип неопределенности

Если движение электрона представляет собой распространение его собственной волны, то при желании точно зафиксировать его положение возникает такое же затруднение, как и в случае камеры-обскуры со слишком малым отверстием. Стреляйте пучком электронов через узкое отверстие в стенке: узкий пучок пройдет через него. Но сделайте-ка отверстие еще меньше, такое, чтобы его диаметр по величине сравнялся с длиной волны электрона: пучок прошедших электронов разойдется во все стороны. Он обязан так сделать. Это не есть отклонение, вызванное ближайшими атомами стенки, от которого можно избавиться: это происходит вследствие волновой природы электрона. Попробуйте предсказать, что произойдет дальше с электроном, прошедшим за стенку, и вы, как ни странно, оказываетесь бессильными. Вам точно известно, в каком месте он пересекает стенку, но сказать, какой при этом импульс в поперечном направлении он приобретет, вы не можете. Наоборот, если вы желаете точно определить его импульс и с уверенностью утверждаете «он появится с импульсом mv в первоначальном направлении, вот и все», то для этого вы должны увеличить отверстие настолько, чтобы электронная волна проходила прямо, лишь слабо расходясь во все стороны из-за дифракции. Но тогда вы точно не знаете, в каком же месте электрон-частица прошел через стенку: отверстие-то широкое. Насколько выигрываешь в точности определения импульса, настолько проигрываешь в точности, с какой известно его положение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»

Обсуждение, отзывы о книге «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x