Такая точка зрения объясняет, в частности, почему атом не может сжиматься так, чтобы электроны двигались по все меньшим и меньшим орбитам. Если положение каждого электрона действительно описывается стоячей волной, то на длине окружности наименьшей орбиты должна укладываться ровно одна длина волны — немыслимо, чтобы в кольцевой стоячей волне содержалась только часть длины волны, — которая должна определить минимальный размер, до которого можно сжать атом. (Соответствующее ограничение для простейшей стоячей волны остается справедливым и при замене циркулярных «орбит» более общими картинами.)
Некоторый смысл приобретает и принцип Паули: посадите несколько тождественных электронов на одну и ту же «орбиту» — картины их стоячих волн сложатся в одну-единственную картину, и тогда мы можем ожидать, что обнаружим один электрон вместо нескольких [203].
Новая атомная теория
Мощный аппарат был развит Шредингером. Исходя из дебройлевского квантово-волнового постулата, он составил общее волновое уравнение (см. т. 2, стр. 588) для электронов. Затем он посмотрел, какие решения в форме стоячих волн должны соответствовать полю кулоновских сил, меняющихся по закону обратных квадратов внутри атома. Это аналогично следующему: определить скорость волны вдоль натянутой струны (см, гл. 10 : СКОРОСТЬ 2= НАТЯЖЕНИЕ / МАССА НА ЕДИНИЦУ ДЛИНЫ); подставить ее в общее волновое уравнение ( 2 V= (1/ c 2)∙( d 2V/ dt 2)); наложить «граничные условия», как, например, для жестко закрепленной струны длиной L (закреплены концы, что предотвращает движение в точках х = 0 и x = L ); затем найти частоты возможных стоячих волн (как в гл. 10 , где вычислены частоты для 1 пучности, 2 пучностей и т. д.). В случае, который рассматривал Шредингер, частоты по квантовому правилу дают энергии. Волновые уравнения и граничные условия здесь более сложны, чем для струны, но они приводят к ценным результатам.
Эта новая интерпретация вскоре была математически применена к волновому рассмотрению электронов в атомах, которое далеко превосходит в успешных предсказаниях теорию Бора. Как и рассмотрение Бора, оно оказалось успешным в применении к атому водорода, даже с более тонкими деталями, и, сверх того, в применении к сложным атомам. Рассмотрение перераспределения электронов при химических превращениях в волновом описании также дало правильные предсказания. Волновое описание было успешно распространено на ядерную физику и интерпретировало радиоактивность в терминах волн-частиц, которые просачиваются через потенциальный барьер ядра. Все это — ценой отказа от какой-либо наглядно определенной модели или картины. Картина атома Бора содержала необязательные конкретные детали — недоказуемые экспериментально и, следовательно, недопустимые для любой долговременной научной теории. Теперь четкие орбиты исчезают и заменяются математическими формулировками волновой модели, которые дают определенные уровни энергии, в точности соответствующие энергиям электронов на старых боровских орбитах. Но у нас нет картины соответствующих волн. Кроме математической формулировки, у них нет ничего общего с волнами на воде или с волнами света. В нашем новом рассмотрении используются такие волны, интенсивность которых показывает, где с наибольшей вероятностью должен быть электрон. Интенсивность волны в выбранной области показывает, сколько шансов за то, что здесь находится электрон. Об интерферирующих световых волнах мы говорим, что математическое описание сообщает нам шансы того, что фотон попадает в определенную часть картины: самые низкие шансы соответствуют темной полосе, самые высокие — светлой. Для связанных электронов в стабильных состояниях атомов у нас есть утверждение о стоячих волнах, которые описывают только облако вероятности распределения электронов: наиболее вероятно здесь, вероятно там, менее вероятно во всех других местах.
Точно так же облако вероятности имеется внутри радиоактивного ядра, например для группы нуклонов α -частицы: вероятность того, что α -частица находится внутри, велика, но, так как волны вероятности распределены во всем пространстве, у α -частицы имеются некоторые шансы оказаться снаружи. В один прекрасный момент она воспользуется этими шансами; тогда она уже снаружи, и после этого электрическое поле выбрасывает ее вдаль. Это грубое, вульгаризованное «объяснение» радиоактивности.
Читать дальше