Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1973, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
  • Автор:
  • Издательство:
    Мир
  • Жанр:
  • Год:
    1973
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг книги:
    4.5 / 5. Голосов: 2
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подобным же образом этот объективно существующий закон неопределенности работает в случае энергии и времени. Нельзя абсолютно точно измерить кинетическую энергию частицы за бесконечно малый отрезок времени. Неопределенность нашего знания энергии Δ Е и интервала времени ее измерения Δ t связаны следующим образом:

Δ Е Δ t ~ h [205]

Во всех приведенных выше соотношениях неопределенностей даже знак ж является слишком точным. Следует говорить (Δ x)∙(Δ mv) ~ h(примерно такой же величины, как h ). Но даже в такой формулировке это лучшее , на что можно надеяться. Поэтому следует говорить «примерно такой же величины, как… или больше [206]».

Этот малый квант действия h играет роль как бы площади дыр в той частой сети, с помощью которой мы желаем выловить информацию в природе. «Клетка точности» вокруг какого-либо куска информации, который мы хотим поймать, должна иметь площадь большую, чем h , иначе улова не будет. Пытаясь поймать какую-нибудь подробную информацию, можно растянуть нашу сеть в каком-нибудь одном аспекте и сузить ее дыры, однако при этом дыры станут длиннее в другом отношении. Подробность, если можно так выразиться, узкая в «ширину», должна быть достаточно велика в «длину», иначе она ускользнет через дыры. Нельзя измерить точно и одновременно величину импульса и координаты: можно только точно измерить одну из них, однако за счет ухудшения знания о другой.

Отсюда ясно, что аппаратура экспериментатора и направление его поиска жестко определяются вопросом, который он изучает. Решив осуществить какое-либо измерение, он тем самым теряет надежду узнать результат точного другого измерения. Это утверждение не звучит как обычное извинение начинающего профессионального ученого: «экспериментальная ошибка», или «вероятная ошибка ± столько-то процентов для данного прибора». Это есть результат всегда существующего, неустранимого взаимодействия прибора и наблюдателя.

На подобное ограничение в биологии уже давно было обращено внимание Г. Дж. Уэллсом: зоолог, экспериментирующий с живым организмом, никогда не имеет дело с абсолютно здоровым, нормальным экземпляром, поскольку сам акт экспериментирования приводит к изменениям в организме исследуемого существа. Современные биологи и те, кто занимается опросом населения, а также все психологи сталкиваются с аналогичным эффектом.

Это ограничение точности физических экспериментов оставалось неосознанным, пока экспериментаторы имели дело с большими телами, состоящими из большого числа атомов. Для таких тел статистические средние (которые мы, жалкие экспериментаторы, обычно наблюдаем) сглаживают флуктуации и дают нам величины, удовлетворяющие строгим законам [207].

Вы уже встречались с эффектом такого сглаживания в случае постоянного давления. Подумайте, однако, что если бы физические эксперименты могла проводить бацилла, то она дала бы совершенно иное описание природы: поверхностные силы перевешивали бы силы гравитации, броуновское движение было бы всеобъемлющим, фотоны бы действовали поодиночке или попарно. Если бы мы могли сами непосредственно это наблюдать, можно было бы еще надеяться видеть и предсказать эти иррегулярности, но при переходе к еще меньшему масштабу — масштабу отдельного атома — присущая природе связь неопределенностей действовала бы в полную силу и препятствовала бы нашему настойчивому любопытству.

Неопределенность и корпускулярно-волновая природа

Если в некоторый момент времени точно замерить местоположение электрона, то это уничтожит все шансы точно измерить его скорость. Это в новой формулировке отражает свойственный природе дуализм волна — частица. Если решено точно измерить скорость электрона, то это позволит определить его импульс и длину волны, важную характеристику последней. Длина волны электрона находится путем измерения длинной последовательности волн (длинного цуга волн), что отрезает путь к рассмотрению электрона в виде компактной частицы и, следовательно, его положения. Если, наоборот, определяется его положение, то тем самым подразумевается, что электрон — частица, и оставляется в стороне вопрос о его волновой природе, что уничтожает возможность что-либо сказать об его импульсе. (См. фиг. 272 из ч. I, иллюстрирующую это.)

Это не безнадежное противоречие между человеком и природой (до этого далеко!): это всего лишь результат наших попыток навязать не свойственное природе обличье. На микроскопическом уровне атомы, электроны и кванты реально ведут себя не как волны и не как частицы. Если в поведении объекта стараться видеть корпускулярные черты, так как что-то в нем их нам напоминает, то это означает измерение характеристик, которыми электрон и атом обладали бы, если бы они действительно были частицами. Человек всегда пытался рисовать себе богов в человеческом обличье. Теперь же он пытается навязать атомам образы его собственных развлечений: мячей, капель воды, океанских волн…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра»

Обсуждение, отзывы о книге «Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x