Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики

Здесь есть возможность читать онлайн «Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Фейнмановские лекции по физике 1. Современная наука о природе, законы механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Фейнмановские лекции по физике 1. Современная наука о природе, законы механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

=+=+1. (6.15)

Так что, как и прежде,

=N. (6.16)

Каково же в этом случае будет распределение расстояний! Какова, например, вероятность того, что после 30 шагов D окажется равным нулю? Вероятность этого равна нулю! Вообще вероятность любой заданной величины D равна нулю. Действительно, совершенно невероятно, чтобы сумма всех шагов назад (при произвольной длине каждого из них) в точности скомпенсировалась шагами вперед. В этом случае мы уже не можем построить график типа изображенного на фиг. 6.2.

Если же, однако, не требовать, чтобы D было в точности равно, скажем, нулю, или единице, или двум, а вместо этого говорить о вероятности получения D где–то вблизи нуля, или единицы, или двух, то при этом мы можем нарисовать график, подобный приведенному на фиг. 6.2. Назовем Р (х, ?x) вероятностью того, что D будет находиться где–то внутри интервала ?x в окрестности величины х (скажем, где–то между х и х +?x). Если Ax достаточно мало, то вероятность того, что D попадет в этот интервал, должна быть пропорциональна его ширине, т. е. Ax. Поэтому мы можем утверждать, что

Р (х, ?x)=р(х)?x. (6.17)

Функция р(х) называется плотностью вероятности.

Вид кривой р(х) зависит как от числа шагов N, так и от распределения шагов по длинам (т. е. от того, какую долю составляют шаги данной длины). К сожалению, я не могу здесь заниматься доказательством этого, а только скажу, что при достаточно большом числе шагов N плотность p (х) одинакова для всех разумных распределений шагов по длинам и зависит лишь от самого N. На фиг. 6.7 показаны три графика р(х) для различных N.

Фиг 67 Плотность вероятности оказаться при случайном блуждании через N шагов - фото 51

Фиг. 6.7. Плотность вероятности оказаться при случайном блуждании через N шагов на расстоянии D.

D измеряется в единицах средней квадратичной длины шага.

Заметьте, что «полуширины» этих кривых, как это и должно быть по нашим предыдущим расчетам, приблизительно равны N .

Вы вероятно заметили также что величина рх вблизи нуля обратно - фото 52

Вы, вероятно, заметили также, что величина р(х) вблизи нуля обратно пропорциональна N . Это происходит потому, что все кривые по форме очень похожи, только одни «размазаны» больше, а другие – меньше, и, кроме того, площади, ограниченные каждой кривой и осью х, должны быть равны. Действительно, ведь р(х) ?x; это вероятность того, что D находится где–то внутри интервала ?x; (Ax мало). Как определить вероятность того, что D находится где–то между x1 и x2? Для этого разобьем интервал между x1 и x2 на узкие полоски шириной Ax; (фиг. 6.8) и вычислим сумму членов р(х) ?x; для каждой такой полоски.

Фиг. 6.8. Вероятность [заштрихованная область под кривой р(х)] того, что при случайном блуждании пройденное расстояние D окажется между x1 и x2.

Геометрически эта вероятность [запишем ее в виде P(x1

Площадь же ограничения всей кривой просто равна вероятности того что D - фото 53

Площадь же ограничения всей кривой просто равна вероятности того, что D принимает какое–то значение между -? и +?. Ясно, что она должна быть равна единице, т. е.

619 Ну а поскольку ширина кривых на фиг 67 пропорциональна N то чтобы - фото 54(6.19)

Ну а поскольку ширина кривых на фиг. 6.7 пропорциональна N, то, чтобы сохранить ту же площадь, их высота должна быть пропорциональна 1/N.

Плотность вероятности, которую мы только что описали, встречается наиболее часто. Она известна также под названием нормальной, или гауссовой, плотности вероятности и записывается в виде

620 причем величина называется стандартным отклонением В нашем случае - фото 55(6.20)

причем величина ? называется стандартным отклонением.

В нашем случае ?=N или NSC–K , если средняя квадратичная длина шага отлична от единицы.

Мы уже говорили о том, что движения молекул или каких–то других частиц в газе похожи на случайные блуждания. Представьте себе, что мы открыли в комнате пузырек с духами или каким–то другим органическим веществом. Тотчас же молекулы его начнут испаряться в воздух. Если в комнате есть какие–то воздушные течения, скажем циркуляция воздуха, то они будут переносить с собой пары этого вещества. Но даже в совершенно спокойном воздухе молекулы будут распространяться, пока не проникнут во все уголки комнаты. Это можно определить по запаху или цвету. Если нам известен средний размер «шага» и число шагов в секунду, то можно подсчитать вероятность обнаружения одной или нескольких молекул вещества на некотором расстоянии от пузырька через какой–то промежуток времени. С течением времени число шагов возрастает и газ «расползается» по комнате, подобно нашим кривым на фиг. 6.7. Длина шагов и их частота, как вы узнаете впоследствии, связаны с температурой и давлением воздуха в комнате.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Фейнмановские лекции по физике 1. Современная наука о природе, законы механики»

Представляем Вашему вниманию похожие книги на «Фейнмановские лекции по физике 1. Современная наука о природе, законы механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Фейнмановские лекции по физике 1. Современная наука о природе, законы механики»

Обсуждение, отзывы о книге «Фейнмановские лекции по физике 1. Современная наука о природе, законы механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x