=+=+1. (6.15)
Так что, как и прежде,
=N. (6.16)
Каково же в этом случае будет распределение расстояний! Какова, например, вероятность того, что после 30 шагов D окажется равным нулю? Вероятность этого равна нулю! Вообще вероятность любой заданной величины D равна нулю. Действительно, совершенно невероятно, чтобы сумма всех шагов назад (при произвольной длине каждого из них) в точности скомпенсировалась шагами вперед. В этом случае мы уже не можем построить график типа изображенного на фиг. 6.2.
Если же, однако, не требовать, чтобы D было в точности равно, скажем, нулю, или единице, или двум, а вместо этого говорить о вероятности получения D где–то вблизи нуля, или единицы, или двух, то при этом мы можем нарисовать график, подобный приведенному на фиг. 6.2. Назовем Р (х, ?x) вероятностью того, что D будет находиться где–то внутри интервала ?x в окрестности величины х (скажем, где–то между х и х +?x). Если Ax достаточно мало, то вероятность того, что D попадет в этот интервал, должна быть пропорциональна его ширине, т. е. Ax. Поэтому мы можем утверждать, что
Р (х, ?x)=р(х)?x. (6.17)
Функция р(х) называется плотностью вероятности.
Вид кривой р(х) зависит как от числа шагов N, так и от распределения шагов по длинам (т. е. от того, какую долю составляют шаги данной длины). К сожалению, я не могу здесь заниматься доказательством этого, а только скажу, что при достаточно большом числе шагов N плотность p (х) одинакова для всех разумных распределений шагов по длинам и зависит лишь от самого N. На фиг. 6.7 показаны три графика р(х) для различных N.

Фиг. 6.7. Плотность вероятности оказаться при случайном блуждании через N шагов на расстоянии D.
D измеряется в единицах средней квадратичной длины шага.
Заметьте, что «полуширины» этих кривых, как это и должно быть по нашим предыдущим расчетам, приблизительно равны N .
Вы, вероятно, заметили также, что величина р(х) вблизи нуля обратно пропорциональна N . Это происходит потому, что все кривые по форме очень похожи, только одни «размазаны» больше, а другие – меньше, и, кроме того, площади, ограниченные каждой кривой и осью х, должны быть равны. Действительно, ведь р(х) ?x; это вероятность того, что D находится где–то внутри интервала ?x; (Ax мало). Как определить вероятность того, что D находится где–то между x1 и x2? Для этого разобьем интервал между x1 и x2 на узкие полоски шириной Ax; (фиг. 6.8) и вычислим сумму членов р(х) ?x; для каждой такой полоски.
Фиг. 6.8. Вероятность [заштрихованная область под кривой р(х)] того, что при случайном блуждании пройденное расстояние D окажется между x1 и x2.
Геометрически эта вероятность [запишем ее в виде P(x1

Площадь же ограничения всей кривой просто равна вероятности того, что D принимает какое–то значение между -? и +?. Ясно, что она должна быть равна единице, т. е.
(6.19)
Ну а поскольку ширина кривых на фиг. 6.7 пропорциональна N, то, чтобы сохранить ту же площадь, их высота должна быть пропорциональна 1/N.
Плотность вероятности, которую мы только что описали, встречается наиболее часто. Она известна также под названием нормальной, или гауссовой, плотности вероятности и записывается в виде
(6.20)
причем величина ? называется стандартным отклонением.
В нашем случае ?=N или NSC–K , если средняя квадратичная длина шага отлична от единицы.
Мы уже говорили о том, что движения молекул или каких–то других частиц в газе похожи на случайные блуждания. Представьте себе, что мы открыли в комнате пузырек с духами или каким–то другим органическим веществом. Тотчас же молекулы его начнут испаряться в воздух. Если в комнате есть какие–то воздушные течения, скажем циркуляция воздуха, то они будут переносить с собой пары этого вещества. Но даже в совершенно спокойном воздухе молекулы будут распространяться, пока не проникнут во все уголки комнаты. Это можно определить по запаху или цвету. Если нам известен средний размер «шага» и число шагов в секунду, то можно подсчитать вероятность обнаружения одной или нескольких молекул вещества на некотором расстоянии от пузырька через какой–то промежуток времени. С течением времени число шагов возрастает и газ «расползается» по комнате, подобно нашим кривым на фиг. 6.7. Длина шагов и их частота, как вы узнаете впоследствии, связаны с температурой и давлением воздуха в комнате.
Читать дальше
Конец ознакомительного отрывка
Купить книгу