§ 3. Случайные блуждания
Существует еще одна интересная задача, при решении которой не обойтись без понятия вероятности. Это проблема «случайных блужданий». В простейшем варианте эта задача выглядит следующим образом. Вообразите себе игру, в которой игрок, начиная от точки х =0, за каждый ход может продвинуться либо вперед (до точки х), либо назад (до точки– х), причем решение о том, куда ему идти, принимается совершенно случайно, ну, например, с помощью подбрасывания монеты. Как описать результат такого движения? В более общей форме эта задача описывает движение атомов (или других частиц) в газе – так называемое броуновское движение – или образование ошибки при измерениях. Вы увидите, насколько проблема «случайных блужданий» тесно связана с описанным выше опытом с подбрасыванием монеты.
Прежде всего давайте рассмотрим несколько примеров случайных блужданий. Их можно описать «чистым» продвижением DN за N шагов. На фиг. 6.5 показаны три примера путей при случайном блуждании.

Фиг. 6.5. Три примера случайного блуждания.
По горизонтали отложено число шагов N, по вертикали – координата
D(N), т. е. чистое расстояние от начальной точки.
(При построении их в качестве случайной последовательности решений о том, куда сделать следующий шаг, использовались результаты подбрасывания монеты, приведенные на фиг. 6.1.)
Что можно сказать о таком движении? Ну, во–первых, можно спросить: как далеко мы в среднем продвинемся? Нужно ожидать, что среднего продвижения вообще не будет, поскольку мы с равной вероятностью можем идти как вперед, так и назад. Однако чувствуется, что с увеличением N мы все с большей вероятностью можем блуждать где–то все дальше и дальше от начальной точки. Поэтому возникает вопрос: каково среднее абсолютное расстояние, т. е. каково среднее значение |D|? Впрочем, удобнее иметь дело не с |D|, а с D2 ; эта величина положительна как для положительного, так и для отрицательного движения и поэтому тоже может служить разумной мерой таких случайных блужданий.
Можно показать, что ожидаемая величина DN2 равна просто N – числу сделанных шагов. Кстати, под «ожидаемой величиной» мы понимаем наиболее вероятное значение (угаданное наилучшим образом), о котором можно думать как об ожидаемом среднем значении большого числа повторяющихся процессов блуждания. Эта величина обозначается как и называется, кроме того, «средним квадратом расстояния». После одного шага D2 всегда равно +1, поэтому, несомненно, =1. (За единицу расстояния всюду будет выбираться один шаг, и поэтому я в дальнейшем не буду писать единиц длины).
Ожидаемая величина DN2 для N >1 может быть получена из DN–1 . Если после (N– 1) шагов мы оказались на расстоянии DN–1 , то еще один шаг даст либо DN=DN–1+1 , либо DN=DN–1–1 . Или для квадратов
(6.7)
Если процесс повторяется большое число раз, то мы ожидаем, что каждая из этих возможностей осуществляется с вероятностью ?/ 2, так что средняя ожидаемая величина будет просто средним арифметическим этих значений, т. е. ожидаемая величина DN2 будет просто DN–12+1. Но какова величина DN–12 , вернее, какого значения ее мы ожидаем? Просто, по определению, ясно, что это должно быть «среднее ожидаемое значение» , так что
=+1. (6.8)
Если теперь вспомнить, что =1, то получается очень простой результат:
=1 . (6.9)
Отклонение от начального положения можно характеризовать величиной типа расстояния (а не квадрата расстояния); для этого нужно просто извлечь квадратный корень из и получить так называемое «среднее квадратичное расстояние» DC–K :
DC–K==N. (6.10)
Мы уже говорили, что случайные блуждания очень похожи на опыт с подбрасыванием монет, с которого мы начали эту главу. Если представить себе, что каждое продвижение вперед или назад обусловливается выпадением «орла» или «решки», то DN будет просто равно N0–Np , т. е. разности числа выпадений «орла» и «решки». Или поскольку N0+Np=N (где N – полное число подбрасываний), то DN=2N0–N . Вспомните, что раньше мы уже получали выражение для ожидаемого распределения величины N0 [она обозначалась тогда через k; см. уравнение (6.5)]. Ну а поскольку N – просто постоянная, то теперь такое же распределение получил ось и для D. (Выпадение каждого «орла» означает невыпадение «решки», поэтому в связи между N0 и D появляется множитель 2.) Таким образом, на фиг. 6.2 график представляет одновременно и распределение расстояний, на которые мы можем уйти за 30 случайных шагов k = 15 соответствует D = 0, a k = 16 соответствует D= 2 и т. д.).
Читать дальше
Конец ознакомительного отрывка
Купить книгу