Carl Sagan - Broca's Brain - The Romance of Science

Здесь есть возможность читать онлайн «Carl Sagan - Broca's Brain - The Romance of Science» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Broca's Brain: The Romance of Science: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Broca's Brain: The Romance of Science»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Carl Sagan, writer and scientist, returns from the frontier to tell us about how the world works. In his delightfully down-to-earth style, he explores and explains a mind-boggling future of intelligent robots, extraterrestrial life and its consquences, and other provocative, fascinating quandries of the future that we want to see today.

Broca's Brain: The Romance of Science — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Broca's Brain: The Romance of Science», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To cause an unknown change

in the earth’s climate?

ROBERT GRAVES,

The Meeting

BETWEEN 30 and 10 million years ago, it is thought, temperatures on Earth slowly declined, by just a few Centigrade degrees. But many plants and animals have their life cycles sensitively attuned to the temperature, and vast forests receded toward more tropical latitudes. The retreat of the forests slowly removed the habitats of small furry binocular creatures, weighing only a few pounds, which had lived out their days brachiating from branch to branch. With the forests gone, only those furry creatures able to survive on the grassy savannas were to be found. Some tens of millions of years later, those creatures left two groups of descendants: one which includes the baboons and the other called humans. We may owe our very existence to climatic changes that on the average amount to only a few degrees. Such changes have brought some species into being and extinguished others. The character of life on our planet has been powerfully influenced by such variations, and it is becoming increasingly clear that the climate is continuing to change today.

There are many indications of past climatic changes. Some methods reach far into the past, others have only a limited applicability. The reliability of the methods also differs. One approach, which may be valid for a million years back in time, is based on the ratio of the isotopes oxygen 18 to oxygen 16 in the carbonates of shells of fossil foraminifera. These shells, belonging to species very similar to some that can be studied today, vary the oxygen 16/oxygen 18 ratio according to the temperature of the water in which they grew. Somewhat similar to the oxygen-isotope method is one based upon the ratio of the isotopes sulfur 34 to sulfur 32. There are other, more direct fossil indicators; for example, the widespread presence of corals, figs and palms denotes high temperatures, and the abundant remains of large hairy beasts, such as mammoths, indicate cold temperatures. The geological record is replete with extensive evidence of glaciation-great moving sheets of ice that leave characteristic boulders and erosional traces. There is also clear geological evidence for beds of evaporites-regions where briny water has evaporated leaving behind the salts. Such evaporation occurs preferentially in warm climates.

When this range of climatic information is put together, a complex pattern of temperature variation emerges. At no time, for example, is the average temperature of the Earth below the freezing point of water, and at no time does it even approach the normal boiling point of water. But variations of several degrees are common, and even variations of twenty or thirty degrees may have occurred at least locally. Fluctuations of a few degrees Centigrade happen over characteristic times of tens of thousands of years, and the recent succession of glacial and interglacial periods has this timing and temperature amplitude. But there are climatic fluctuations over much longer periods, the longest being on the order of a few hundred million years. Warm periods appear to have occurred about 650 million years ago and 270 million years ago. By the standards of past climatic fluctuations, we are now in the midst of an ice age. For most of the Earth’s history, there were no “permanent” ice caps, as in the Arctic and Antarctic today. We have, over the past few hundred years, made a partial emergence from our ice age caused by some as yet unexplained minor climatic variation; and there are certain signs that we may plunge back into the global cold temperatures characteristic of our epoch as seen from the perspective of the immense vistas of geological time. It is a sobering fact that 2 million years ago the site of the city of Chicago was buried under a mile of ice.

What determines the temperature of Earth? As seen from space, it is a rotating blue ball streaked with varying cloud patches, reddish-brown deserts and brilliant white polar caps. The energy for heating the Earth comes almost exclusively from sunlight, the energy conducted up from the hot interior of the Earth amounting to less than one thousandth of one percent of that arriving in the form of visible light from the Sun. But not all the sunlight is absorbed by the Earth. Some is reflected back to space by polar ice, clouds, and the rocks and water on the surface of the Earth. The average reflectivity, or albedo, of the Earth, as measured directly from satellites and indirectly from Earthshine reflected off the dark side of the Moon, is about 35 percent. The 65 percent of sunlight that is absorbed by the Earth heats it to a temperature which can readily be calculated. This temperature is about −18°C, below the freezing point of seawater and some 30°C colder than the measured average temperature of the Earth.

The discrepancy is due to the fact that this calculation neglects the so-called greenhouse effect. Visible light from the Sun enters the Earth’s clear atmosphere and is transmitted through to the surface. The surface, however, in attempting to radiate back into space, is constrained by the laws of physics to do so in the infrared. The atmosphere is not so transparent in the infrared, and at some wavelengths of infrared radiation-such as 6.2 microns or 15 microns-radiation would travel only a few centimeters before being absorbed by atmospheric gases. Since the Earth’s atmosphere is murky and absorbing at many wavelengths in the infrared, the thermal radiation given off by the surface of the Earth is impeded in escaping to space. In order to have a close equality between the radiation received by the Earth from the Sun and the radiation emitted by the Earth to space, the surface temperature of the Earth must then rise. The greenhouse effect is due not to the major atmospheric constituents of the Earth, such as oxygen and nitrogen, but almost exclusively to the minor constituents, especially carbon dioxide and water vapor.

As we have seen, the planet Venus is probably a case where the massive injection of carbon dioxide and smaller amounts of water vapor into a planetary atmosphere has led to such a large greenhouse effect that water cannot be maintained on the surface in the liquid state; hence, the planetary temperature runs away to some extremely high value-in the case of Venus, 480°C.

We have so far been talking about average temperatures. The temperature of the Earth varies from place to place. It is colder at the poles than at the equator because, in general, sunlight falls directly on the equator and obliquely on the poles. The tendency for the temperatures to be very different between equator and poles on Earth is moderated by atmospheric circulation. Hot air rises at the equator and moves at high altitudes to the poles, where it settles and returns to the surface; it then retraces its path, but at low altitudes, from pole back to equator. This general motion-complicated by the rotation of the Earth, its topography and the phase changes of water-is responsible for weather.

The observed average temperature of about 15°C on the Earth today can be explained quite well by the observed intensity of sunlight, global albedo, the tilt of the rotational axis and the greenhouse effect. But all of these parameters can, in principle, vary; and past or future climatic change can be attributed to changes in any of them. In fact, there have been almost a hundred different theories of climatic change on Earth, and even today the subject is hardly marked by unanimity of opinion. This is not because climatologists are by nature ignorant or contentious, but rather because the subject is exceedingly complex.

Both negative and positive feedback mechanisms probably exist. Suppose, for example, there were a decrease of a few degrees in the Earth’s temperature. The amount of water vapor in the atmosphere is determined almost entirely by temperature and declines by snowing out as the temperature declines. Less water in the atmosphere implies a smaller greenhouse effect and a further lowering of the temperature, which may result in even less atmospheric water vapor, and so on. Likewise, a decline in temperature may increase the amount of polar ice, increasing the albedo of the Earth and decreasing the temperature still further. On the other hand, a decline in temperature may decrease the amount of cloudiness, which will decrease the average albedo of the Earth and increase the temperature-perhaps enough to undo the initial temperature decrease. And it has been proposed recently that the biology of the planet Earth acts as a kind of thermostat to prevent too extreme excursions in temperature which might have deleterious global biological consequences. For example, a decline in temperature may cause an increase of a species of hardy plants that has extensive ground cover and low albedo.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Broca's Brain: The Romance of Science»

Представляем Вашему вниманию похожие книги на «Broca's Brain: The Romance of Science» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Broca's Brain: The Romance of Science»

Обсуждение, отзывы о книге «Broca's Brain: The Romance of Science» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x