Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим тогда, что температура опустилась на 273 градуса ниже 0 °С. В том случае Δt будет равно –273. Из уравнения 13.4 мы видим, что ΔV в этом случае будет равно V(-273)/273, или –V. B результате новый объем, который равен (V + ΔV), будет равен (V — V), или нулю. Строгое применение закона Гей-Люссака показывает, что при достижении температуры –273 °С объем газов станет равным нулю.

Однако такая возможность не заставила физиков запаниковать. Они предположили, что, прежде чем газы достигнут температуры, равной — 273 °С, они перейдут из газообразной формы в жидкую, а там коэффициент объемного расширения будет намного меньшим. (И как оказалось, это было совершенно верным.) Но даже если бы это было не так, кажется весьма вероятным, что закон Гей-Люссака не может строго применяться при очень низких температурах [63] Важно помнить, что многие научные обобщения являются справедливыми только при определенных диапазонах давления, температуры и множестве других факторов окружающей среды. Это не затрагивает полноценность обобщения в пределах рассматриваемого диапазона, но нельзя ожидать, что они будут полезны нам. когда мы вышли за границы этого диапазона. и что коэффициент объемного расширения может постепенно уменьшаться, по мере понижения температуры, и, хотя объем продолжает сокращаться, это будет происходить все медленнее и медленнее и в конечном итоге никогда не достигнет нуля.

Тем не менее температура –273 °С не была забыта. В 1848 году Уильям Томсон, которому позже было присвоен титул лорда Кельвина, указал, что было бы удобным принять –273 °С за точку отсчета, как самую низкую возможную температуру. Ее назвали «абсолютный нуль» [64] Фактическое значение абсолютного нуля, согласно новейшим современным исследованиям, равно –273,16 °С. .

Если мы примем величину в –273 °С за нуль и рассчитаем от этого значения вверх шкалу в градусах Цельсия, то получим «абсолютную шкалу температур». Данные, которые мы снимаем с этой шкалы, представляют собой «абсолютную температуру», а градусы, которые мы считываем, могут быть обозначены как (°А) (от слова «абсолютный») или, как более часто пишут, °К (от фамилии Кельвин).

Чтобы привести температуру в градусах Цельсия к абсолютной шкале, необходимо всего лишь добавить 273. Например, точка замерзания воды равна 0 °С, что равно 273 °К; а закипает вода при 100 °С, то есть при 373 'К. Чтобы предотвратить неразбериху, общепринято обозначать значения температуры по шкале Цельсия буквой t, а значения по шкале Кельвина — буквой T [65] Однако покончить с неразберихой не так уж и просто. Например, t обозначает не только температуру по Цельсию, но также, и очень часто, — время. Сейчас в физике используются все буквы латинского и греческого алфавитов, а также некоторые буквы из иврита, санскрита и других языков, строчные, прописные, подстрочники и субскрипты, написанные курсивом, жирным шрифтом или готическим письмом, и все равно, невзирая на такое обилие символов, имеются многочисленные случаи их совпадения. По этой причине при представлении любого уравнения всегда желательно описывать значение каждого из символов и никогда не допускать, что значение любого из них — самоочевидно. . Таким образом, мы можем записать соотношение шкалы Кельвина к шкале Цельсия следующим образом:

Т = t + 273. (Уравнение 13.5)

Удобство использования абсолютной шкалы опирается на тот факт, что некоторые физические отношения могут быть выражены в более простой форме, если мы будем использовать T, а не t. Например, попробуем выразить взаимосвязь, по которой объем газа изменяется вместе с температурой. Начнем с температуры, равной t 1, при которой объем газа равен ( V 1 ), тогда, когда температура изменится до значения t 2, объем газа будет равен V 2, окончательный объем будет равен первоначальному объему плюс изменение в объеме, то есть V 2 = V 1 + ΔV

Если мы возьмем уравнение 13.4, то увидим, что ΔV = V 1Δt)/273. Однако изменение в температуре (Δt) — это разность между конечной и начальной температурами (t 2– t 1). Величина объемного расширения газов определяется для начальной температуры равной 0 °С, так что t 2− t 1, становится равным t 2— 0, или просто t 2. Поэтому мы можем заменить в уравнении 13.4 Δt на t 2. Тогда выражение (V 2 = V 1+ ΔV) приобретает вид:

V 2= V 1+ V 1T 2/273 = V 1(1 + t 2/273). (Уравнение 13.6)

Его можно легко преобразовать в:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x