Теперь зададим себе вопрос: «Какое изменение в длине соответствует изменению в температуре?» Естественно было бы обозначить изменение в длине как ΔL, тогда изменение в длине будет равно длине после изменения температуры минус первоначальная длина. То есть это будет L + Lα(Δt) — L, и окончательная формула, которую мы получаем, будет выглядеть:
ΔL = Lα( Δt ). (Уравнение 13.3)
Однако с повышением температуры материя расширяется не только по длине, но и во всех других направлениях, поэтому гораздо важнее знать изменение в объеме тела, а не только в его длине. В жидкостях и газах мы вообще можем измерить только изменение в объеме. Что же касается твердых тел (особенно когда тело представляет собой длинный прут), то часто гораздо проще измерить линейное расширение, а уже из него вычислить объемное расширение.
Начнем с того, что примем утверждение, что коэффициент линейного расширения для данного материала имеет одно и то же значение для ширины и высоты тела, как и для его длины [61] Данное утверждение не всегда строго истинно… монокристалл может расширяться на различные величины в различных направлениях в зависимости от существующих взаимосвязей между составляющими его молекулами и атомами. В этом отношении кристалл может иметь и многие другие свойства, которые будут изменяться в зависимости от направления. То есть с этой точки зрения он «анизотропен». Однако существующие вокруг пас обычные материалы, как правило, не являются кристаллическими, или если они и кристаллические, то они составлены из несметного количества крошечных кристаллов, каждый из которых связан с другими такими же. Но тогда свойства кристаллов будут в среднем одинаковые во всех направлениях, а материя будет «изотропной». Мы обычно рассуждаем о свойствах окружающей нас материи, как будто она изотропна, потому что это проще в рассмотрении, но не стоит забывать, что анизотропия не является очень редким явлением. Например, все мы знаем, что намного легче расколоть деревянный брусок «по волокнам», чем против волокон».
. Предположим, что мы взяли тело размером в один кубический метр (то есть его длина, ширина и высота равны одному метру каждая). После повышения температуры на 1 °С его длина станет равной 1 + α метров. Однако его ширина также увеличится и станет равна 1 + α метров, то же самое справедливо и для его высоты. Начальный объем тела был равен 1 3метров (понятно, что 1 3= 1), теперь он стал равен (1 + α) 3кубических метров. При изменении температуры на 1 °С объем тела изменяется на (1 + α 3) — 1 3, или на (1 + α 3) — 1. Эта величина характеризует изменение объема тела в зависимости от изменения температуры и называется «коэффициент объемного расширения».
Величина (1 + α 3) может быть по обычным алгебраическим правилам выражена в виде: 1 + 3α + 3α 2+ α 3. Из этого выражения мы вычитаем 1 и получаем, что коэффициент объемного расширения тела равен 3α + 3α 2+ α 3, в этом выражении α — очень маленькая величина, как мы это уже отмечали в случае твердых тел и жидкостей, соответственно α 2и α 3— еще гораздо меньшие величины [62] Это может сразу не показаться очевидным. Однако если число больше единицы, то квадрат и куб данного числа — еще большие величины. Чем больше число, тем больше становятся и его квадрат, и куб. Таким образом, 10 в квадрате равно 100, а 10 в кубе — 1000. В то же время 100 в квадрате равно 10 000, а 100 в кубе — 1 000 000. Положение кардинально меняется для чисел меньше единицы. Квадрат и куб таких чисел становятся тем меньше, чем больше степень, в которую возводится число, с другой стороны, чем меньше исходное число, тем меньше становятся его квадрат и куб. Таким образом, 1 / 10 в квадрате равна 1 / 100 , а 1 / 10 в кубе равна 1 / 1000 . Если мы вернемся к рассматриваемому коэффициенту теплового расширения стали, который численно равен 1 / 100000 , то увидим, что его квадрат равен 1 / 10 000 000 000 , а куб — 1 / 1000 000 000 000 000 .
, которые можно игнорировать как не вносящие существенного изменения в выражение. Тогда если мы отбросим квадрат и куб а, то можем с весьма достаточной точностью сказать, что коэффициент объемного расширения равен 3α, то есть утроенному коэффициенту линейного расширения. Таким образом, если коэффициент линейного расширения стали равен 1∙10 -5/°С, то его же коэффициент объемного расширения примерно равен 3∙10 -5/°С.
Коэффициент объемного расширения жидкостей приблизительно в десять раз больше, чем таковой для твердых тел, и значительно выше для газов. Как выяснилось, именно для газов коэффициент объемного расширения имеет самое большое теоретическое значение.
Читать дальше