Подойдем к уравнению Шредингера точно так же. Примем его вначале просто как символ квантовой механики, как некий герб квантовой страны, по которой мы теперь путешествуем, и постараемся понять, почему он именно таков. Некоторые штрихи в этом гербе нам уже понятны: m — это масса электрона, ħ — постоянная Планка h, деленная на 2π, Е — полная энергия электрона в атоме, U(x) — его потенциальная энергия, х — расстояние от ядра до электрона. Несколько сложнее понять символ второй производной d 2/dx 2, но с этим пока ничего нельзя поделать, вначале придется просто запомнить, что это символ дифференциального исчисления, из-за которого уравнение Шредингера не простое, а дифференциальное.
Самое сложное — понять, что собой представляет ψ-функция (читается: пси-функция). Это действительно не просто, и вначале даже сам Шредингер истолковал неправильно ее смысл. Мы также поймем его несколько позднее, а сейчас важно усвоить следующее: несмотря на свою необычность, пси-функция все же как-то представляет движение электрона в атоме. По-другому, чем матрицы Гейзенберга {X nk} и {Р nk}, но все-таки представляет, и притом хорошо. Настолько хорошо, что с ее помощью многие задачи квантовой механики можно решать значительно проще и быстрее, чем с помощью матриц Гейзенберга.
Физики довольно быстро оценили преимущества волновой механики: ее универсальность, изящество и простоту, и с тех пор почти забросили механику матричную.
Однако победа далась не сразу
Представьте себе, что вы стоите перед зеркалом в зеленом свитере и вдруг замечаете, что ваше изображение одето в красный свитер. Прежде всего вы, вероятно, протрете глаза, а если это не поможет, пойдете к врачу. Потому что «так не бывает». В самом деле, зеленые лучи — что волны, длина которых λ = 5500 Ǻ. Встретив на пути препятствие — зеркало, они отражаются, но при этом никак не могут изменить свою длину и стать, например, красными (λ = 7500 Ǻ). А Комптон наблюдал именно это явление. Направив на мишень пучок рентгеновых лучей с длиной волны λ, он обнаружил, что длина волны рассеянных лучей λ 'больше длины волны падающих, то есть рассеянные лучи действительно «краснее» первоначальных!
Чудо это можно понять, если вспомнить гипотезу Эйнштейна о квантах света, которую он предложил для объяснения явлений фотоэффекта. Действительно, в этом случае вместо рентгеновых волн с длиной λ и частотой ν = c/λ нужно представлять себе поток частиц — квантов с энергией E = h ν. Сталкиваясь с электронами атомов мишени, они выбивают их оттуда (затратив энергию Р), разгоняют до скорости v (дополнинительно затратив энергию (mv 2 ))/2, а сами рассеиваются с меньшей энергией E '= h v '. Очевидно, что h ν = h ν '+ P + (mv 2 ))/2.
Если атом полностью поглотит квант света (E '= 0), то мы увидим обычное явление фотоэффекта, а уравнение Комптона превратится в уравнение Эйнштейна:
h ν = P + (m v 2)/2
Оба эти опыта можно провести в камере Вильсона, проследить путь каждого выбитого электрона и тем самым наглядно представить процесс столкновения светового кванта с электроном.
Но в таком случае что нам мешает увидеть себя в красном свитере? Оказывается, все те же квантовые законы, которые запрещают электрону поглощать произвольные порции энергии. Электрон на стационарной орбите в атоме может поглотить только такой квант, который либо перебросит его из одного стационарного состояния в другое, либо выбросит его из атома (вспомните опыт Франка и Герца). Энергия «зеленых квантов» (длина их волны (λ = 5,5 10 -5см = 5500Ǻ) равна
E = h ν = ((h c)/λ = 6,62 10 -27• 3 • 10 10)/(5,5 • 10 -5) = 3,6 • 10 -12
эрг ≈ 2эв.
А этого слишком мало, чтобы вырвать электрон из атома (нужно впятеро больше, Р ≈ 10 эв). Поэтому они упруго (без потери энергии) отразятся от атомов зеркала и при этом нисколько не «покраснеют».
Совсем другую картину являют собой рентгеновы лучи (λ ≈ 1 Ǻ). Их энергия примерно в 5—10 тысяч раз больше, и потому явления, которые с ними происходят, иные. Например, они вовсе не отражаются от зеркала, а свободно через него проходят, срывая по пути электроны с его атомов.
Конечно, даже простой процесс отражения зеленого света от зеркала несколько сложнее, чем мы это сейчас представили. Но существует еще одна — главная — трудность: в нашей стройной картине, где вместо волн света сплошь одни только кванты света, нет места опытам Фридриха, Книппинга и Лауэ, которые открыли дифракцию рентгеновых лучей и тем самым доказали их волновую природу.
Читать дальше