Как примирить эти несовместимые представления: лучи-волны и лучи-кванты?
В следующей главе мы увидим, что квантовая механика справилась и с этой задачей.
ЭЛЕКТРОН: ЧАСТИЦА ИЛИ ВОЛНА?
Мы не думаем об этом каждый день, точно так же, как и об устройстве телефона. Мы просто пользуемся приборами, в которых электрон «работает», — телевизором, рентгеновским аппаратом, электронным микроскопом. Но если задуматься, как устроены эти аппараты, то вопрос о природе электрона сразу потеряет свой академический характер.
В телевизионной трубке изображение получают с помощью электронов, которые разгоняются напряжением V ≈ 10 000 в. При этом они приобретают скорость v; ≈ 5 10 9см/сек — всего в шесть раз меньше скорости света. Длину их волны легко вычислить по формуле де Бройля: λ = h/m v, она равна λ ≈ 0,1 Ǻ то есть в 10 раз меньше размеров атома. И поскольку в телевизоре электроны распространяются прямолинейно, мы их воспринимаем как поток частиц.
В электронном микроскопе тот же электрон работает как волна: пучок электронов разгоняют напряжением в 100000 вольт до скорости 10 10см/сек, что соответствует длине волны в 0,05 Ǻ. Кроме того, этот пучок проходит через систему магнитных линз, точно так же, как в обычном микроскопе луч света проходит через линзы оптические. В волновой оптике хорошо известно, что из-за явлений дифракции даже в лучший микроскоп нельзя разглядеть предмет, если его размеры меньше, чем половина длины волны света, которым он освещен. Длина волны видимого света равна 5000 Ǻ, поэтому в обычный микроскоп можно различать лишь предметы, размеры которых превышают 2500 Ǻ. Размеры бактерий превышают 10 -4см = 10 000 Ǻ, поэтому их легко наблюдать в обычный микроскоп. Но уже вирусы в такой микроскоп различить нельзя: их размеры меньше 1000 Ǻ (например, диаметр вируса гриппа всего 800 Ǻ).
Теоретически электронный микроскоп позволяет разглядеть объекты размером до 0,02 Ǻ, то есть в 50 раз меньше атома. Означает ли это, что мы можем таким способом рассмотреть отдельный атом? Нет, конечно. Энергия связи электрона в атоме (Р) равна примерно 10 электрон-вольтам (энергия, которую приобретает электрон, пройдя разность потенциалов 10 в). А в электронном микроскопе электроны приобретают энергию около 100 тыс. электрон-вольт. Такие «лучи» сразу же, при первом столкновении с атомом, разрушат его. (В самом деле, легко сообразить, что если мы захотим получить на стене тень от пылинки, стреляя по ней из ружья, то ничего хорошего из такой затеи не выйдет.) Реально в электронный микроскоп удалось пока рассмотреть объекты размером 5—10Ǻ, то есть в 5—10 раз больше атома.
Как и многие открытия в физике, дифракция электронов была обнаружена во многом «случайно», хотя, как любил повторять Пастер, «случай говорит только подготовленному уму».
В 1922 году по заказу американской фирмы «Белл-телефон» Клинтон Джозеф Дэвиссон (1881–1958) и его сотрудник Кенсмен изучали отражение электронных пучков от поверхности металлов и вдруг заметили какие-то аномалии. В 1925 году, после работ де Бройля, ученик Макса Борна Вальтер Эльзассер предположил, что эти аномалии объясняются электронными волнами. Дэвиссон прочел эту заметку, но не придал ей значения. В 1926 году он приехал в Европу и показывал свои графики Максу Борну и Джеймсу Франку в Геттингене, а также Дугласу Хартри в Оксфорде. Все они единодушно признали в них волны де Бройля. В пути через океан Дэвиссон изучал работы Шредингера и вскоре по приезде в Америку вместе с Лестером Альбертом Джермером (род. 1896) подтвердил гипотезу де Бройля опытом.
Дж. П. Томсон подошел к проблеме с другого конца. Он с самого начала относился к гипотезе де Бройля с большим сочувствием и вскоре после посещения Англии Дэвиссоном стал обдумывать способы доказать ее на опыте. В Англии после работ Крукса и Дж. Дж. Томсона опыты с катодными лучами стали непременным и привычным элементом образования. Быть может, поэтому Дж. П. Томсон прежде всего задумался, а нельзя ли приспособить их для новых опытов. Почти сразу же отыскалась подходящая готовая установка в Абердине, с которой работал студент Александр Рейд. Уже через два месяца они получили на этой установке прекрасные фотографии дифракции электронов, которые в точности напоминали дифракцию рентгеновых лучей. Это было естественно, поскольку в их опытах электроны ускорялись потенциалом в 150 в (обычное напряжение городской сети). Длина волны таких электронов равна примерно Ǻ = 10 -8см, то есть сравнима с длиной волны рентгеновых лучей и с размерами атомов.
Читать дальше