В жизни дислокации формирование облака играет очень важную роль. Говорят, что дислокация, окруженная облаком, — состарившаяся дислокация. Один из признаков ее старости — уменьшенная подвижность. Кристалл, содержащий состарившиеся дислокации, — состарившийся кристалл, обнаруживший один из признаков жизни — старение. Окруженная облаком дислокация, двигаясь, должна волочить за собой облако, с которым она прочно связана. Сила этой связи обусловлена тем, что образование облака сопровождалось уменьшением энергии, а следовательно, отрыв дислокации от облака должен будет сопровождаться потерей этого выигрыша энергии. Сказанное означает, что дислокация с облаком связана некоторой силой.
Естественное предсказание: если к дислокации приложить большую силу, дислокация от облака оторвется и... помолодеет, окажется свободной от тормозящего влияния скопления примесных атомов, обретет большую подвижность. А с ней помолодеет и кристалл, станет более пластичным.
Из примесного облака вокруг дислокации может выпасть «роса». Все подобно тому, как это происходит с обычным облаком. Только обычное облако, пересыщенное влагой, может родить капельки воды, а примесное облако, пересыщенное атомами примеси, — капельки, состоящие из этих атомов. Здесь аналогия приобретает доказательную силу, во всяком случае она вполне достаточна для того, чтобы не удивляться появлению частичек, состоящих из примесных атомов и располагающихся вдоль дислокационных линий, подобно капелькам росы на паутине.
Процессы образования капель росы и частичек из примесных атомов, разумеется, не абсолютно идентичны, хотя бы потому, что один из них происходит в газовой среде, а другой — в кристалле. Оставим в стороне те черты процессов, которыми они отличаются, а подчеркнем роднящие их черты. Паутина, усеянная каплями, — великолепный зримый образ дислокации, вдоль которой расположены крупинки инородного вещества.
То, что рассказано об облаке вокруг ядра дислокации, широко используется при создании сплавов с повышенной прочностью. Композиторы таких сплавов рассуждают следующим образом. Для того чтобы упрочнить кристалл, надо помешать дислокациям легко перемещаться под влиянием извне приложенных напряжений. А это достигается введением в кристалл примесных атомов, объем которых существенно отличается от объема основных атомов кристалла. В этом случае вокруг дислокации возникнет облако, и она, состарившись, потеряет подвижность. Цель будет достигнута: состарившийся кристалл окажется прочнее молодого.
Подобно примесному облаку, крупинки на дислокационной линии также являются причиной ее пониженной подвижности: двигаться, перемещая с собой крупинки, существенно труднее, чем двигаться свободно, без них.
Обсудим случай, когда крупинки почему-либо вообще не могут двигаться и по отношению к дислокации окажутся неподвижными стопорами, мешающими ее движению. А дислокация должна была бы двигаться, так как извне к ней приложено некоторое напряжение. Оно должно вызвать пластическое деформирование кристалла, которое не может происходить, если дислокации неподвижны. Под влиянием приложенных напряжений участок дислокационной линии, расположенный между двумя стопорами, должен будет изгибаться, подобно натягиваемой тетиве лука. Но изгиб дислокационной линии означает ее удлинение, а следовательно, увеличение связанной с ней энергии. Это вполне достаточное основание для того, чтобы дислокация сопротивлялась изгибающим усилиям, чтобы появлялось напряжение, противодействующее тому, которое приложено извне.
Иной образ, иная модель: все происходящее с застопоренным участком дислокационной линии очень подобно тому, что происходит с пленкой мыльного пузыря, выдуваемого на соломинке. По мере того как плоская мембрана из мыльной пленки, закрывающей торец соломинки, начинает выгибаться под влиянием давления газа, увеличивается противодавление, обусловленное изгибом мембраны. Это давление, как известно, равно Р = 2 Р л= 4α/ R , где Р л — лапласовское давление, множителем 2 учтено наличие двух поверхностей у мыльной пленки, R — радиус ее изгиба, α— поверхностное натяжение. Легко себе представить, что радиус изгиба пленки меняется от бесконечной величины, когда пленка в виде плоской мембраны перекрывает торец соломинки, до величины, соответствующей радиусу раздутого пузыря. Минимальное значение радиус изогнутой пленки принимает тогда, когда она становится полусферической, опирающейся на периметр соломинки, как на экватор: R тiп= d/ 2, d — диаметр соломинки. Из рассказанного следует, что для того, чтобы раздуть мыльный пузырь, надо в трубке создать давление, превосходящее Р mах = 8α/d. При таком давлении раздуваемая пленка станет полусферической, и ее дальнейший рост, когда R > d /2, требует уже меньшего давления газа.
Читать дальше