• Аддитивные показатели . Значения этих показателей для портфеля активов могут быть вычислены путем суммирования их значений, рассчитанных для каждого актива по отдельности. Примером такого показателя является «математическое ожидание прибыли».
• Неаддитивные показатели, трансформируемые в аддитивные . Хотя значения таких показателей для портфеля активов не могут быть вычислены путем простого суммирования, они могут быть трансформированы в близкие по смыслу показатели, обладающие свойством аддитивности. В предыдущей главе мы описали способ трансформации неаддитивной дельты в аддитивную индексную дельту.
• Неаддитивные, аналитически вычислимые показатели . Значения таких показателей для портфеля активов не могут быть вычислены путем суммирования. Для вычисления их значений необходима дополнительная информация. Примером такого показателя является стандартное отклонение, для вычисления которого необходима (помимо стандартных отклонений отдельных активов) ковариационная матрица, включающая все входящие в состав портфеля активы.
• Неаддитивные, аналитически невычислимые показатели . Значения таких показателей для портфеля активов невозможно вычислить ни путем простого суммирования, ни аналитическими методами. К таким показателям относятся различные нелинейные алгоритмы и свертки нескольких показателей.
Основной проблемой, возникающей при использовании портфельной системы распределения капитала, является необходимость решения задачи максимизации показателя или группы показателей, на основании которых формируется портфель. Для аддитивных показателей, применяемых в рамках одномерной системы распределения капитала, решение этой задачи тривиально – весь капитал инвестируется в единственную комбинацию с наибольшим значением показателя. Безусловно, такое решение неприемлемо с точки зрения диверсификации, поэтому в таких случаях необходимо установить некий минимальный вес для определенной группы комбинаций. Однако и это решение в большинстве случаев не может быть удовлетворительным. Поэтому аддитивные показатели лучше не использовать, если портфель формируется на базе единственного показателя.
В тех случаях, когда капитал распределяется на основании неаддитивного показателя либо на основании нескольких показателей (как аддитивных, так и неаддитивных), задачу максимизации их значений для портфеля в целом, как правило, невозможно решить, пользуясь аналитическими методами. В таких случаях приходится использовать методы случайного поиска (например, метод Монте-Карло). При этом задача максимизации формулируется следующим образом: найти такой набор весов для каждой комбинации в портфеле, чтобы величина показателя (или группы показателей), рассчитанная для всего портфеля в целом, оказалась максимальной.
4.6.2. Сравнение портфельной и элементной системы
В этом разделе мы проанализируем, каким образом выбор уровня оценки влияет на параметры формируемого портфеля. Для этого необходимо сравнить прибыли, получаемые при распределении капитала на основании портфельной системы с прибылями портфелей, сформированных с помощью элементной системы. Такое же сравнение следует провести в отношении меры концентрированности капитала.
Сравнительный анализ основывается на моделировании двух торговых стратегий, аналогичных той, что была описана в разделе 4.4.1, за исключением принципа распределения капитала. На протяжении всего периода моделирования было построено 6448 портфелей для каждого из двух способов распределения капитала. В обеих стратегиях капитал распределялся по свертке двух показателей – EPLN и индексной дельты. Поскольку величина индексной дельты прямо пропорциональна риску коротких опционных комбинаций, свертка двух выбранных нами показателей рассчитывалась как отношение EPLN к индексной дельте. Для одной стратегии показатель свертки рассчитывался для каждой отдельно взятой комбинации и капитал распределялся по принципам элементной системы (как описано во всех рассмотренных выше примерах). Для другой стратегии значение свертки вычислялось для всего портфеля в целом и капитал распределялся по принципам портфельной системы.
Для реализации портфельной системы распределения капитала необходимо выбрать методику оптимизации. Оптимизируемой функцией в данном случае является свертка показателей EPLN и индексная дельта, вычисляемая для портфеля в целом:
Читать дальше
Конец ознакомительного отрывка
Купить книгу