Другой механизм поддержания полиморфизма основан на разнородности условий среды и «эволюционном компромиссе» между противоречивыми требованиями отбора. Например, у пауков Nephila maculata есть разноцветная полосатая и строго черная формы. Разноцветные пауки своей окраской привлекают мелких насекомых и заманивают больше добычи в сети, зато черные лучше переносят понижение температуры, потому что быстрее нагреваются на солнце. В зависимости от локальных микроусловий селективное преимущество получает то одна, то другая форма, и, пока микроусловия остаются разнородными, ни одна не может вытеснить другую. Необходимо помнить, что в строго гомогенных условиях две формы, имеющие одинаковую (и не зависящую от частоты) приспособленность, не будут неопределенно долго сосуществовать в популяции. Их соотношение будет случайным образом колебаться до тех пор, пока одна из них не исчезнет (как это происходит, рассказано в нашей книге «Эволюция. Классические идеи в свете новых открытий»).
Наконец, третий механизм, способный обеспечить устойчивое сохранение дискретного полиморфизма, — селективное преимущество гетерозигот (см. Исследование № 10). Самый известный пример связан с серповидноклеточной анемией: гомозиготы по мутации в гене HBB страдают анемией, гомозиготы по отсутствию этой мутации беззащитны перед малярийным плазмодием, а гетерозиготам лучше всех — оба недуга угрожают им лишь в небольшой степени. Результат — устойчивый полиморфизм по форме эритроцитов в человеческих популяциях, живущих в малярийных районах.
Для многих видов тлей характерен полиморфизм по окраске. Чаще всего встречаются две формы тлей: зеленая и красная (илл. III, см. цветную вклейку). Окраска зависит от пигментов каротиноидов, на синтез которых влияют как гены самой тли, так и ее бактериальные симбионты. В летний период, когда тли размножаются партеногенетически , окраска устойчиво передается от матери к дочерям, а при половом размножении у ряда видов наблюдается менделевское расщепление, свидетельствующее о моногенном наследовании.
Считается, что устойчивый полиморфизм по окраске у тлей связан с тем, что божьи коровки преимущественно охотятся на красных особей, а другой смертельный враг — наездники — предпочитает откладывать яйца в зеленых. Это может приводить к частотно-зависимому балансирующему отбору: когда становится слишком много красных тлей, на популяцию набрасываются божьи коровки, что делает зеленую окраску более выгодной, но когда зеленые особи начинают преобладать, налетают тучи наездников — и преимущество получают красные тли. Впрочем, устойчивый полиморфизм в этой ситуации может поддерживаться и без частотно-зависимого отбора — за счет гетерогенности среды (например, если в зависимости от погоды, времени суток и других переменчивых факторов шансы встретиться с божьей коровкой или наездником асинхронно колеблются).
Однако это объяснение едва ли приложимо к тлям, живущим в тесном содружестве с муравьями. Муравьи надежно защищают своих подопечных и от наездников, и от божьих коровок. Тем не менее у таких тщательно охраняемых тлей тоже встречается полиморфизм по окраске. Ни частотно-зависимым отбором, ни гетерогенностью условий, ни преимуществом гетерозигот объяснить это не удается.
Японские энтомологи попытались разгадать эту загадку на примере тли Macrosiphoniella yomogicola ( Watanabe et al., 2016). Этот вид распространен в Японии, питается полынью. M. yomogicola практически всегда живут под защитой муравьев и при этом имеют полиморфизм по окраске. Чаще всего этих тлей пасут муравьи Lasius japonicus , хотя и другие виды муравьев ими не брезгуют.
Для начала исследователи решили проверить, насколько важна для тлей муравьиная забота. Для этого они намазали нетоксичным клеем основания восьми стеблей полыни, на которых жили колонии тлей. Это преградило доступ на растения муравьям, но не летающим врагам тлей, таким как наездники и божьи коровки. В качестве контроля использовали восемь таких же растений, не обмазанных клеем, а также три растения, у которых намазаны были не основания стеблей, а листья (это был контроль, учитывающий вероятное влияние клея, но при этом муравьи имели возможность заботиться о тлях). Результаты получились вполне убедительные. Всего за девять дней жизни без муравьев семь из восьми колоний погибли полностью, а в последней уцелело одно-единственное насекомое. Между тем из восьми колоний, продолжавших общение с муравьями, за тот же срок исчезла только одна, а остальные чувствовали себя прекрасно. Не пострадали и три контрольные колонии на растениях с измазанными клеем листьями. Таким образом, эксперимент подтвердил, что данный вид тлей практически не может существовать без муравьиной опеки.
Читать дальше
Конец ознакомительного отрывка
Купить книгу