Сразу после удвоения гена мутация в одной из его копий не приносит вреда и не отсеивается отбором, даже если нарушает функциональность, — ведь остается вторая копия, успешно справляющаяся с той работой, которую больше не может выполнять первая. Но как только одна из копий утратит какую-то функцию, отбор уже не допустит подобной потери второй копией, ведь организму необходима хоть одна работающая версия гена. Что, впрочем, не мешает второй копии потерять другую функцию, пока еще сохранившуюся у первой. Если это произойдет, копии перестанут быть «избыточными». Теперь ни одна из них не может быть утрачена без резкого снижения приспособленности (а значит, отбор не позволит им потеряться). В итоге вместо одного «неразборчивого», многофункционального белка организм получает два специализированных.
Самое интересное, что такое усложнение молекулярной организации вовсе не обязано быть «полезным», то есть повышать приспособленность организма. Вполне возможно, что после дупликации и разделения функций организм будет чувствовать себя ничуть не лучше, чем до этих событий. Например, в описанных экспериментах дрожжи, у которых специализированные белки Mcm1 и Arg80 были заменены на предковый универсальный AncMADS, росли не хуже обычных. В отдаленной перспективе дупликация и субфункционализация могут открыть новые эволюционные возможности, ведь две копии исходного гена (и их функции) теперь имеют право эволюционировать более или менее независимо. Но естественный отбор ничего не знает об отдаленных перспективах, он ориентируется только на «здесь и сейчас». Усложнение молекулярной организации в данном сценарии — лишь побочное (хотя и закономерное) следствие случайного удвоения гена.
Не остановившись на достигнутом, ученые решили проверить гипотезу, согласно которой после удвоения многофункциональных белков, таких как AncMADS, вовлеченных к тому же в сложную сеть взаимодействий с другими белками, возникшие паралоги могут конфликтовать и мешать друг другу работать. Например, новообразовавшийся паралог AncArg80, разучившийся взаимодействовать с кофактором Matα1, мог бы по ошибке присоединяться к регуляторной области генов α, занимая то место на ДНК, куда должен прикрепляться другой паралог, AncMcm1. В результате регуляция генов α оказалась бы нарушена. Если такой конфликт между паралогами действительно когда-то существовал, то в дальнейшем отбор должен был поддержать и закрепить мутации, снижающие его остроту.
В поисках подобных мутаций исследователи обратили внимание на ту часть молекулы AncArg80, которая отвечает за присоединение белка к ДНК. Здесь обнаружилось пять аминокислотных замен, делающих связь белка с ДНК менее прочной. Может быть, именно благодаря этим заменам белок AncMcm1 и его потомки, сохранившие способность крепко цепляться за ДНК, и одерживают верх над Arg80 в конкуренции за право присоединиться к регуляторной области генов α? Чтобы проверить эту смелую гипотезу, ученые сконструировали версию AncArg80, лишенную вышеупомянутых пяти замен в ДНК-связывающей области. Ген этого белка внедрили в геном дрожжей вместо изъятого оттуда гена Arg 80. Результат подтвердил ожидания исследователей: у модифицированных дрожжей регуляция генов α оказалась полностью нарушена. Когда пять мутаций вернули на место, гены α снова заработали нормально.
Следовательно, адаптивный смысл пяти замен, ослабивших связь Arg80 с ДНК, скорее всего, действительно состоял в том, чтобы сгладить конфликт между паралогами. Благодаря этим заменам Arg80 не лезет не в свое дело и не мешает другому паралогу, Mcm1, регулировать работу генов α. Можно сказать, что закрепление этих пяти замен окончательно превратило копии удвоившегося AncMADS в два разных белка. Приняв такую формулировку, согласимся с авторами, полагающими, что в данном случае конфликт между паралогами способствовал усложнению системы генной регуляции (усложнение, напомним, состояло в том, что гены ARG, для управления которыми ранее хватало двух белков-регуляторов, теперь стали контролироваться тремя).
Кроме того, ослабление связи Arg80 с ДНК объясняет, почему гены ARG регулируются гетеродимером Mcm1+Arg80, а не гомодимером Arg80+Arg80. По-видимому, белок Mcm1 просто-напросто помогает Arg80 удерживаться на ДНК (на регуляторных участках генов ARG). Что мешает гомодимерам Mcm1+Mcm1 присоединяться к этим участкам, конкурируя с гетеродимерами и нарушая работу генов ARG, — пока неясно.
По мнению исследователей, конфликты между паралогами могут быть важным фактором, направляющим процесс формирования эволюционных новшеств путем дупликации генов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу