3) Зависимость.Паралог, который в норме взаимодействует с третьим белком, теряет эту способность при удалении другого паралога. Это значит, что генная дупликация сделала белок-белковое взаимодействие более хрупким, поскольку теперь повреждение любого паралога может его нарушить.
В ходе экспериментов выяснилось, что компенсация и зависимость возникают примерно с одинаковой частотой. Компенсация была обнаружена в 22 парах паралогов (из 56) и затрагивала в общей сложности 91 белок-белковую связь (из примерно 2000 рассмотренных). Зависимость оказалась характерна для 19 пар паралогов и затрагивала 137 белок-белковых взаимодействий. При этом компенсация и зависимость редко встречались вместе у одной и той же пары паралогов.
Ученые также заметили, что взаимное влияние паралогов в большинстве случаев асимметрично, то есть только один из двух способен компенсировать утрату другого (19 случаев из 22) или находится в зависимости от другого (14 случаев из 19).
На чем основан механизм компенсации? По идее, то, какой из двух паралогов будет взаимодействовать с третьим белком, может зависеть от количества (концентрации) каждого из паралогов, а также от их аффинности, то есть, грубо говоря, от прочности связывания с этим белком. Дополнительные эксперименты показали, что компенсирующий эффект чаще всего обусловлен различиями в аффинности. В нормальной ситуации с третьим белком связывается тот из паралогов, который лучше умеет это делать. Но если высокоаффинный паралог удалить, то второй, избавившись от конкуренции со стороны более «умелого» партнера, начинает выполнять его работу.
А механизм зависимости, как выяснилось, преимущественно связан с тем, что два паралога объединяются в комплекс — гетеромер , причем один из паралогов стабилизирует другой и помогает ему выполнять его работу. Дополнительные эксперименты на других парах паралогов у дрожжей, а также на культурах человеческих клеток показали, что зависимость одного паралога от другого действительно чаще всего встречается в случае образования гетеромеров.
Анализ данных по белок-белковым взаимодействиям у разных эукариот продемонстрировал, что паралоги, объединяющиеся в гетеромеры, — довольно частое явление. У разных видов эукариот от 6 до 27 % всех пар паралогов образуют гетеромеры. Почему же белки, возникшие из одного предкового белка в результате генной дупликации, объединяются друг с другом, образуя гетеромеры? По-видимому, часто это происходит оттого, что удваивается белок, уже исходно образовывавший комплексы из двух одинаковых белковых молекул — гомомеры . Типичный сценарий развития зависимости может быть следующим.
Предковый белок образует гомомеры — и в таком виде осуществляет взаимодействие с другими белками. После дупликации в одном из паралогов накапливаются мутации, мешающие ему образовывать гомомеры, но не мешающие связываться с другим паралогом. У второго паралога в этом случае могут закрепиться мутации, помогающие связываться с «подпорченным» партнером. Так появляются гетеромеры — комплексы из двух различающихся паралогов, один из которых (а иногда и оба) уже не способен образовывать гомомеры. Гетеромер взаимодействует с другими белками так же, как это делал раньше гомомер исходного, еще не удвоившегося белка. В итоге получается, что после дупликации сложность молекулярной организации возрастает (то, что раньше делали белковые молекулы одного типа, теперь делают совместными усилиями белковые молекулы двух разных типов), хотя очевидной пользы организму это не приносит, а помехоустойчивость межбелковых взаимодействий снижается.
Данный механизм формирования зависимости одного паралога от другого очень похож на «бессмысленное усложнение» (см. Исследование № 18). По-видимому, такое не приносящее пользы усложнение, обусловленное разнонаправленной мутационной деградацией паралогов с последующей компенсаторной «подгонкой» их друг к другу, является важной эволюционной закономерностью, которая, возможно, в какой-то степени объясняет прогрессирующий рост сложности в некоторых эволюционных линиях.
Не исключено, что наличие партнера-помощника, компенсирующего дефекты зависимого паралога, дает последнему дополнительную эволюционную свободу. В принципе, это может способствовать приобретению зависимым паралогом новых функций. Таким образом, в отдаленной перспективе «бессмысленное усложнение» может открывать перед организмами новые эволюционные горизонты. Насколько часто эти возможности реализуются, покажут дальнейшие исследования.
Читать дальше
Конец ознакомительного отрывка
Купить книгу