Исследование № 18
Бессмысленное усложнение
Данное исследование, на наш взгляд, имеет большое мировоззренческое значение. Оно наглядно показывает, как в ходе эволюции сложное может развиться из простого совершенно случайно и без всякой пользы. Организм усложняется, не получая от этого никакой выгоды: эффективность выполнения всех функций остается на прежнем уровне. Этот пример, добавляя конкретики описанным выше оценкам последствий генных дупликаций (см. Исследование № 17), еще раз подчеркивает «недальновидность» естественного отбора, его работу только «здесь и сейчас». С помощью генно-инженерных экспериментов американские биологи расшифровали последовательность событий, в результате которых у предков пекарских дрожжей ( Saccharomyces cerevisiae ) усложнилась одна из регуляторных систем. Предковый ген удвоился, и в каждой из двух копий стали накапливаться свои мутации. В итоге каждая копия утратила ту или иную часть исходных функций. Функции, утраченные каждой из копий, были разными, благодаря чему копии перестали быть избыточными — теперь оба гена, по-разному подпорченные мутациями, стали жизненно необходимы организму. Дальнейшая специализация двух генов подстегивалась тем, что поначалу они конкурировали, мешая друг другу работать. Минимизация конкуренции потребовала закрепления дополнительных мутаций. В конце концов система усложнилась (два специализированных гена вместо одного многофункционального), хотя сами дрожжи ничего от этого не выиграли. Усложнение стало побочным эффектом цепочки отчасти случайных, отчасти закономерных событий, начало которым положило случайное удвоение гена.
Данное исследование было выполнено биологами из Калифорнийского университета в Сан-Франциско (США) в 2013 году ( Baker et al., 2013). Работа пролила свет на процесс появления эволюционных новшеств в результате генных дупликаций — на два важных его аспекта.
Во-первых, она показала, что генные дупликации могут чисто автоматически, через ряд взаимообусловленных промежуточных шагов, приводить к усложнению регуляторных генных сетей. Это происходит даже в том случае, если в подобном усложнении нет необходимости и организм мог бы продолжать с тем же успехом обходиться простой регуляторной сетью.
Во-вторых, работа показала, что копиям удвоившегося гена (паралогам) не всегда удается легко и быстро разделить функции, особенно если ген включен в сложную сеть межмолекулярных взаимодействий. В этом случае копии, едва начав делить функции, начинают конкурировать и мешать друг другу работать. Для устранения этой проблемы требуется закрепление дополнительных мутаций, что способствует окончательному превращению паралогов в два специализированных белка со строгим разделением обязанностей.
Авторы изучили последствия дупликации гена Mcm 1 у дрожжей. Этот ген есть у всех грибов. Он кодирует важный регуляторный белок, который, объединяясь в комплексы с другими регуляторными белками (кофакторами), присоединяется к ДНК, чтобы активировать близлежащие гены (рис. 18.1). Mcm 1 в целом консервативен, хотя и имеет некоторые различия у разных видов.
У некоторых дрожжей, например Kluyveromyces lactis , гены метаболизма аргинина (ARG) регулируются комплексом из двух белковых молекул Mcm1 (такие комплексы называют гомодимерами ), который, в свою очередь, соединяется с кофактором Arg81 (рис. 18.1, а ). У пекарских дрожжей, Saccharomyces cerevisiae, и их ближайшей родни белковый комплекс, регулирующий работу генов ARG, устроен сложнее. Он включает не два, а три разных белка. Вместо гомодимера из двух молекул Mcm1 пекарские дрожжи используют гетеродимер — соединенные молекулы белков Mcm1 и Arg80 (рис. 18.1, б ), и уже этот гетеродимер соединяется с Arg81.
рис. 18.1.Схема регуляции работы генов, связанных с метаболизмом аргинина (гены ARG) и с половым размножением (гены α), у дрожжей Kluyveromyces lactis и Saccharomyces cerevisiae . Комплексы белков-регуляторов присоединяются к регуляторным участкам ДНК (сайты ARG, сайты α) возле контролируемых генов. У K. lactis обе группы генов (ARG и α) регулируются гомодимерами — комплексами из двух молекул белка Mcm1 ( а, в ). У S. cerevisiae гены α регулируются такими же гомодимерами ( г ), а для регуляции генов ARG используется гетеродимер, состоящий из Mcm1 и дополнительного регуляторного белка Arg80, которого нет у K. lactis ( б ). Ген Arg80 появился у предков S. cerevisiae в результате дупликации исходного гена Mcm1 и последующего разделения функций. Arg81 и Matα1 — кофакторы. По рисунку из Baker et al., 2013 .
Читать дальше
Конец ознакомительного отрывка
Купить книгу