5. FOXO3 . Этот белок работает [601] Morris B. J. et al. FOXO3 – a major gene for human longevity // Gerontology. 2015 Mar; 61 (6): 515–525.
как фактор транскрипции: запускает гены, которые участвуют в починке ДНК, и тормозит другие гены, которые стимулируют рост и деление клетки. В некотором смысле он противостоит действию инсулина, тормозя клеточный обмен веществ, а точнее – переключая его на самоподдержание.
Тем не менее многие ученые скептически настроены по отношению к поискам "генов долгой жизни". Хотя бы потому, что к долголетию может вести несколько разных путей. Клаудио Франчески, например, предлагает [602] Giuliani C. et al. Genetics of human longevity within an eco-evolutionary nature-nurture framework // Circulation Research. 2018 Sep; 123: 745–772.
считать итальянских обитателей "голубых зон" и европейских долгожителей фенокопиями, то есть организмами, которые достигли одного и того же результата посредством разных генетических стратегий. Так, оказалось [603] Zeng Y. et al. Sex differences in genetic associations with longevity // JAMA Network Open. 2018 Aug; 1 (4): e181670.
, что долгожители-мужчины часто несут мутации в генах, связанных с воспалением – вероятно потому, что у мужчин воспалительный ответ в целом слабее. А долгожители-женщины добиваются успеха другим путем – за счет генов, связанных с обменом триптофана (предшественника серотонина, "гормона счастья", а также переносчика водородов НАД+, который может служить антиоксидантом). Поэтому вполне возможно, что единого рецепта долгой жизни у людей, как и у животных, мы так и не найдем.
Если внимательно посмотреть на список генов, которые позволяют объяснить разброс в продолжительности жизни у людей, то можно заметить, что большинство из них так или иначе связаны [604] Trimmers P. R. H. J. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances // eLife. 2019; 8: e39856.
с основными рисками смерти в пожилом возрасте: деменцией, сердечно-сосудистыми болезнями и раком легких. Да и сами кривые смертности от возрастных болезней подозрительно напоминают [605] Zenin A. et al. Identification of 12 genetic loci associated with human healthspan // Communications Biology. 2019 Jan; 2: 41.
кривую Гомперца. Это позволяет предположить, что самая выигрышная стратегия для долгой жизни – избежать наиболее распространенных болезней. Но если это так, то набор генов, связанных с долголетием, будет меняться по мере развития медицины. В XIX веке люди чаще умирали от инфекций, чем сейчас, в XX веке на смену инфекциям пришли деменция и рак. Кто знает, когда мы научимся бороться и с ними, какая болезнь следующей выйдет на первый план? И тогда через сотню лет в статьях, посвященных долгожительству, будут значиться совсем другие гены.
Долгие и безрезультатные поиски генов, которые отвечали бы за изнашивание организма, сильно подрывают позиции теории запрограммированного старения. Но это не единственный аргумент, который есть у противников этой теории [606] Kowald A. & Kirkwood T. B. L. Can aging be programmed? A critical literature review // Aging Cell. 2016 Aug; 15 (6): 986–998.
.
Еще, например, они требуют объяснить, как такая программа могла бы появиться [607] Gladyshev V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes // Aging Cell. 2016 Apr; 15 (4): 594–602.
. Владимир Скулачев, например, утверждает, что выбывание старых организмов из популяции ускоряет смену поколений и, следовательно, эволюцию вида. Но, если особь дожила до пожилого возраста, это значит, что она достаточно хорошо приспособлена к условиям, в которых существует. Имеет ли смысл убивать ее в надежде, что молодое поколение случайно окажется носителем еще более "удачных" для данных условий мутаций? Учитывая, что "удачные" мутации возникают нечасто, такая стратегия может не принести непосредственной выгоды для популяции – а значит, не будет поддержана отбором.
Другое соображение сторонников программируемого старения состоит в том, что чем короче поколение, тем больше генетических вариантов "проверяется" природой одновременно, то есть выше разнообразие и выше шанс "угадать" и получить подходящий генотип. Но если условия внешней среды не изменяются постоянно, то такая спешка не приносит непосредственной выгоды – предыдущее поколение может оказаться достаточно приспособленным. А если условия внешней среды изменяются все время, то пожилые особи, с которыми должна бы бороться программа, не успевают заполнить собой всю нишу и вытеснить оттуда молодое поколение.
Читать дальше
Конец ознакомительного отрывка
Купить книгу