См. п. 255.
Walters R. O. et al. Sarcosine is uniquely modulated by aging and dietary restriction in rodents and humans // Cell Reports. 2018 Oct; 25 (3): 663–676. E6.
Valvezan A. J. & Manning B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat // Nature Metabolism. 2019 Mar; 1: 321–333.
Wang S.-Y. et al. Methionine restriction delays senescence and suppresses the senescence-associated secretory phenotype in the kidney through endogenous hydrogen sulfide // Cell Cycle. 2019 Jun; 18 (14): 1573–1587.
Parkhitko A. A., Jouandin P., Mohr S. E., Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species // Aging Cell. 2019 Aug; 18 (6): e13034.
De Cabo R., Carmona-Gutierrez D., Bernier M., Hall M. N., Madeo F. The search for antiaging interventions: from elixirs to fasting regimens // Cell. 2014 Jun; 157 (7): 1515–1526.
Newman J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice // Cell Metabolism. 2017 Sep; 26 (3): 547–557.e8.
Shimazu T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor // Science. 2013 Jan; 339 (6116): 211–214.
Roberts M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice // Cell Metabolism. 2017 Sep; 26 (3): 539–546.e5.
Kosinski C. & Jornayvaz F. R. Effects of ketogenic diets on cardiovascular risk factors: evidence from animal and human studies // Nutrients. 2017 May; 9 (5): 517.
Paoli A., Rubini A., Volek J. S., Grimaldi K. A. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets // European Journal of Clinical Nutrition. 2013 Jun; 67: 789–796.
См. п. 263.
См. п. 263.
См. п. 264.
См. п. 229.
Mitchell S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories // Cell Metabolism. 2019 Jan; 29 (1): 221–228. E3.
Stekovic S. et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans // Cell Metabolism. 2019 Sep; 30 (3): 462–476. E5.
Villareal D. T. et al. Effect of two‐year caloric restriction on bone metabolism and bone mineral density in non‐obese younger adults: a randomized clinical trial // Journal of Bone and Mineral Research. 2015 Aug; 31 (1): 40–51.
Sehgal S. N., Baker H., Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization // The Journal of Antibiotics (Tokyo). 1975 Oct; 28 (10): 727–732.
Saunders R. N., Metcalfe M. S., Nicholson M. L. Rapamycin in transplantation: A review of the evidence // Kidney International. 2001 Jan; 59 (1): 3–16.
Horvath S., Lu A. T., Cohen H., Raj K. Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative senescence, proliferation and differentiation // Aging. 2019 May; 11 (1): 3238–3249.
Harrison D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice // Nature. 2009 Jul; 460: 392–395.
См. п. 59.
Mannick J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly // Science Translational Medicine. 2018 Jul; 10 (449): eaaq1564.
Bannister C. A. et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non‐diabetic controls // Diabetes, Obesity and Metabolism. 2014 Jul; 16 (11): 1165–1173.
Martin-Montalvo A. et al. Metformin improves healthspan and lifespan in mice // Nature Communications. 2013 Jul; 4: 2192.
https://www.afar.org/research/TAME
Gómez-Linton D. R. et al. Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging // Biogerontology. 2019 Jun; 20: 583–603.
Campisi J. et al. From discoveries in ageing research to therapeutics for healthy ageing // Nature. 2019 Jul; 571: 183–192.
Miller R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice // The Journals of Gerontology: Series A. 2011 Feb; 66A (2): 191–201.
http://www.natap.org/2010/newsUpdates/012411_02.htm.
Admasu T. D. et al. Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling // Developmental Cell. 2018 Oct; 47 (1): 67–79.e5.
Huang X. et al Reducing signs of aging and increasing lifespan by drug synergy // Aging Cell. 2013 Apr; 12 (4): 652–660.
См. п. 59.
Chen D. et al. Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans // Cell Reports. 2013 Dec; 5 (6): 1600–1610.
См. п. 132.
Castillo-Quan J. I. et al. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity // PNAS. 2019 Oct; 116 (42): 20817–20819.
Davidsohn N. et al. A single combination gene therapy treats multiple age-related diseases // PNAS. 2019 Nov; 116 (47): 23505–23511.
Fahy G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans // Aging Cell. 2019 Sep; 18 (6): e13028.
Konopka A. R. et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults // Aging Cell. 2018 Dec; 18 (1): e12880.
Blagosklonny M. V. From rapalogs to anti-aging formula // Oncotarget. 2017 May; 8 (22): 35492–35507.
Шульц Е. А. О молодении (пер. Н. Гринфельда) // Смерть и бессмертие I. Новые идеи в биологии. "Смерть и бессмертие I"; цикл "Новые идеи в биологии". – СПб.: Образование, 1914. – С. 148.
Конец ознакомительного отрывка
Купить книгу