Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Difffхуy2difffху у2 Difffху - фото 265

> Diff(f(х,у),y$2)=diff(f(х,у), у$2);

Difffху х4у4difffхух3у2 Получаемые в результате - фото 266

> Diff(f(х,у), х$4,у$4)=diff(f(х,у),х$3,у$2);

Получаемые в результате дифференцирования выражения могут входить в другие - фото 267

Получаемые в результате дифференцирования выражения могут входить в другие выражения. Можно задавать их как функции пользователя и строить графики производных.

4.3.3. Дифференциальный оператор D

Для создания функций с производными может также использоваться дифференциальный оператор D. Порою он позволяет создавать более компактные выражения, чем функции diff и Diff. Дифференциальный оператор можно записывать в следующих формах: D(f) или D[i](f), где параметр f — выражение или имя функции, i — положительное целое число, выражение или последовательность. Оператор D(f) просто вычисляет имя производной от f, поскольку в этой форме он эквивалентен unnaply(diff(f(x),x),x). В форме D(f)(x) этот оператор подобен diff(f(x),x).

Приведем примеры дифференцирования функций, заданных только именами, и функций с одним параметром (файл D):

> restart;

> D(cos^2);

-2 sin cos

> D(exp^2+cos^2+tan+GAMMA);

2exp² - 2sin cos + 1 + tan² + ΨΓ

> D(sin)(x)=diff(sin(x), x);

cos(x) = cos(x)

> D[1](sin*cos);

cos² - sin²

Следующий пример показывает дифференцирование функции пользователя fun с применением дифференциального оператора D и функции diff:

> fun:=(x)->sin(x^2);

fun:= x→sin(x²)

> D(fun)=diff(fun(x),x);

(x→2 cos(x²)x) = 2 cos(x²)x

Дифференциальный оператор можно применять и для дифференцирования функций нескольких переменных по заданной переменной (файл D):

> f := (х, у, z)->х*ехр(у)+ln(z);

f: = (х, у, z) → х е у+ ln(z)

> D[1](f);

(x,y,z) → e y

> D[2](f);

(x,y,z) → xe y

> D[3](f);

(x,y,z) → ½

Пример применения дифференциального оператора для функции f, заданной программным объектом-процедурой, представлен ниже:

> restart;

> f:=proc(x,b,n) local i,d,s;

> s:=0;

> for i from n by -1 to 0 do s:=s*x+b[i] od;

> s

> end:

-> D[1](f);

proc(x, b, n)

local i, s, sx;

sx := 0;

s := 0;

for i from n by -1 to 0 dosx

sx := sx×x + s;

s := sx×x + b[i]

end do;

sx

end proc

Этот пример показывает реализацию схемы Горнера для полинома b степени n от переменной х. При этом применение оператора дифференцирования возвращает процедуру. Ряд интересных возможностей по вычислению производных предоставляет пакет расширения student.

4.3.4. Импликативное дифференцирование

Иногда подлежащая дифференцированию зависимость задана импликативно, т.е. в виде уравнения f. Для дифференцирования таких зависимостей служит функция, используемая в виде:

implicitdiff(f,у,х)

implicitdiff(f,у,x1,...,xk)

Примеры применения импликативного дифференцирования приведены ниже (файл impldiff):

> f1 := х*у=1:implicitdiff(f1, у, x);

Maple 9510 в математике физике и образовании - изображение 268

> subs(y=1/x,%);

Maple 9510 в математике физике и образовании - изображение 269

> f2:=2*х^4-3*х^2*у^2+у^4=16:implicitdiff(f2, у, х);

Maple 9510 в математике физике и образовании - изображение 270

> f3:=x*cos(у)+y*cos(х)=1:implicitdiff(f3,у,x);

Maple 9510 в математике физике и образовании - изображение 271

В справке по этой функции можно найти более сложные формы записи этой функции и дополнительные примеры ее применения.

4.3.5. Maplet-вычислитель производных Derivatives

При обучении основам математического анализа удобны обучающие средства на основе Maplet-технологии. Эти новые средства (их не было даже в Maple 9) размещены в позиции Tools меню системы Maple 9.5 при ее применении в стандартном виде. Команда Tools→Tutors Calculus-Single Variables→Derivatives… открывает окно Maple-вычислителя производных, показанное на рис. 4.1.

Рис 41 Окно Mapletвычислителя производных В окне можно в интерактивном - фото 272

Рис. 4.1 Окно Maplet-вычислителя производных

В окне можно в интерактивном режиме задать выражение для функции f(x), вычислить производную f'(x) и, нажав кнопку Dispay, получить графики заданной функции и ее производной в заданных пределах изменения х от а до b. При закрытии окна графики появляются в текущей строке вывода системы Maple 9.5.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x