Возможно представление интеграла и в полярной системе координат. Пример этого дан на рис. 5.38.
Рис. 5.38. Maplet-окно демонстрации приближенного вычисления двойного интеграла в полярной системе координат
5.13.6. Маплет-демонстрация сечения поверхности
Команда Cross Section… открывает Maplet-окно демонстрации сечения поверхности плоскостями. Поверхность задается функцией двух переменных z(x, у). Окно этой команды представлено на рис. 5.39.
Рис. 5.39. Maplet-окно демонстрации сечения поверхности параллельными плоскостями
Работа с этим окном вполне очевидно. На рисунке в левой части окна строится исходная поверхность, секущие плоскости и линии их пересечения.
Глава 6
Решение задач линейной алгебры, оптимизации и регрессии
Задачи линейной алгебры, оптимизации и регрессии — одни из самых массовых в науке, технике и образовании [37, 39–46]. Им и посвящена эта глава. В ней даны основные определения линейной алгебры, основы работы с массивами, векторами и матрицами, функции для работы с векторами и матрицами и для решения систем линейных уравнений. Дано описание средств оптимизации, в том числе новейших системы Maple 10.
6.1. Основные операции линейной алгебры
6.1.1. Основные определения линейной алгебры
Прежде чем перейти к рассмотрению обширных возможностей пакетов Maple в решении задач линейной алгебры, рассмотрим краткие определения, относящиеся к ней.
Матрица (m×n) — прямоугольная двумерная таблица, содержащая m строк и n столбцов элементов, каждый из которых может быть представлен числом, константой, переменной, символьным или математическим выражением (расширительная трактовка матрицы).
Квадратная матрица — матрица, у которой число строк m равно числу столбцов n. Пример квадратной матрицы размера 3×3:
Определитель матрицы — это многочлен от элементов квадратной матрицы, каждый член которого является произведением n элементов, взятых по одному из каждой строки и каждого столбца со знаком произведения, заданным четностью перестановок:
где M 1 — определитель матрицы порядка n-1, полученной из матрицы А вычеркиванием первой строки и j- го столбца. В таком виде определитель (он же детерминант) легко получить в символьных вычислениях. В численных расчетах мы будем подразумевать под определителем численное значение этого многочлена.
Сингулярная (вырожденная ) матрица — квадратная матрица, у которой детерминант (определитель) равен 0. Такая матрица обычно не упрощается при символьных вычислениях. Линейные уравнения с почти сингулярными матрицами могут давать большие погрешности при решении.
Единичная матрица — это квадратная матрица, у которой диагональные элементы равны 1, а остальные элементы равны 0. Ниже представлена единичная матрица размера 4×4:
Сингулярные значения матрицы А — квадратные корни из собственных значений матрицы transpose(A)∙А, где transpose(A) — транспонированная матрица А (см. ее определение ниже).
Транспонированная матрица — матрица, у которой столбцы и строки меняются местами, то есть элементы транспонированной матрицы удовлетворяют условию A T(i,j)=A(j,i). Приведем простой пример.
Исходная матрица:
Транспонированная матрица:
Обратная матрица — это матрица М -1 , которая, будучи умноженной на исходную квадратную матрицу М, дает единичную матрицу Е.
Ступенчатая форма матрицы соответствует условиям, когда первый ненулевой элемент в каждой строке есть 1 и первый ненулевой элемент каждой строки появляется справа от первого ненулевого элемента в предыдущей строке, то есть все элементы ниже первого ненулевого в строке — нули.
Читать дальше
Конец ознакомительного отрывка
Купить книгу