Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Применение регрессии обычно оправдано при достаточно большом числе точек исходных данных. При этом регрессия может использоваться для сглаживания данных.

5.12.3. Регрессия для функции ряда переменных

Функция fit может обеспечивать регрессию и для функций нескольких переменных. При этом надо просто увеличить размерность массивов исходных данных. В качестве примера ниже приведен пример регрессии для функции двух переменных

> f:=fit[leastsquare[[x, у, z],z=a+b*x+c*y,{a,b,c}]]\

([[1,2,3,5,5], [2,4,6,8,8], [3, 5, 7,10, Weight (15, 2)]]) ;

f := z = 1 + 13/3 x - 7/6 у

> fa:=unapply(rhs(f),x,у);

fa := (x, y) -> 1 + 13/3 x - 7/6 у

> fa(l., 2.) ;

2.999999999

> fa(2,3);

37/6

В данном случае уравнение регрессии задано в виде z = а + bх + су. Обратите внимание на важный момент в конце этого примера — применение полученной функции регрессии для вычислений или построения ее графика. Прямое применение функции f в данном случае невозможно, так как она представлена в невычисляемом формате. Для получения вычисляемого выражения она преобразуется в функцию двух переменных fa(x,y) путем отделения правой части выражения для функции f. После этого возможно вычисление значений функции fa(x,y) для любых заданных значений х и у.

5.12.4. Линейная регрессия общего вида

Функция fit может использоваться и для выполнения линейной регрессии общего вида:

f(x) = af1(x) +bf2(x) +cf3(x) + …

Функция такой регрессии является линейной комбинацией ряда функций f1(х), f2(х), f3(х), причем каждая их них может быть и нелинейной, например экспоненциальной, логарифмической, тригонометрической и т.д. Пример линейной регрессии общего вида представлен на рис. 5.30.

Рис 530 Пример выполнения линейной регрессии общего вида В литературе и - фото 687

Рис. 5.30. Пример выполнения линейной регрессии общего вида

В литературе и даже в документах системы Maple линейная регрессия общего вида часто называется нелинейной регрессий. Однако это неверно, поскольку нелинейной является регрессия, функция которой не может быть представлена линейной комбинацией функций.

5.12.5. О нелинейной регрессии с помощью функции fit

К сожалению, функция fit неприменима для нелинейной регрессии. При попытке ее проведения возвращается структура процедуры, но не результат регрессии — см. пример ниже:

> fit[leastsquare[[х,у], у=а*2^(х/b),{а,b}]]([[1,2,3,4], [1.1,3.9,9.5,15.25]]);

Однако большинство нелинейных зависимостей удается свести к линейным с помощью - фото 688

Однако, большинство нелинейных зависимостей удается свести к линейным с помощью простых линеаризирующих преобразований [1, 2, 4]. На рис. 5.31 показан пример экспоненциальной регрессии f(x)=ае , которая (благодаря логарифмированию точек y) сводится к линейной регрессии. Детали преобразований даны в документе рис. 5.31. Используя другие преобразования этот документ легко приспособить для выполнения других видов нелинейной регрессии, например степенной или логарифмической.

Рис 531 Пример экспоненциальной регрессии Функция нелинейной регрессии - фото 689

Рис. 5.31. Пример экспоненциальной регрессии

Функция нелинейной регрессии входит в новейший пакет оптимизации Optimization, введенный в Maple 9.5, и описанный в следующей главе. Кроме того, на Интернет-сайте корпорации Waterloo Maple можно найти файлы simplenl.mws и gennlr.mws с процедурами и примерами линейной и нелинейной регрессий общего вида. Интересная реализация нелинейной регрессии для кусочной функции дается в файле nonelinearpiecewise.mws.

5.12.6. Сплайновая регрессия с помощью функции BSplineCurve

Функция BSplineCurve из пакета CurveFitting может использоваться для реализации сплайновой регрессии. Пример этого представлен на рис. 5.32. Опция order задает порядок B-сплайнов, который на 1 меньше заданного целого значения.

Рис 532 Пример выполнения сплайновой регрессии Всплайнами Функция - фото 690

Рис. 5.32. Пример выполнения сплайновой регрессии В-сплайнами

Функция BsplineCurve выглядит несколько недоделанной. Так, при order=3 и 4 кривая регрессии не дотягивает до концевых точек, а при установки order=1 все точки соединяются отрезками прямых — в том числе концевые. Так что использовать эту функцию для экстраполяции нельзя.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x