Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
1.234000001

Функция Split(a, х, b) служит для расщепления полинома а с независимой переменной х. Параметр b — не обязательный. Функция Split(a, х) осуществляет комплексную факторизацию инвариантного полинома а по х. Если третий аргумент b задан, он представляет множество элементов {t1, … ,tm}, таких что полином а расщепляется над K=Q(t1, …, tm), где Q означает поле рациональных чисел.

Примеры:

> Split(х^2+х+1,х);

(х - RootOf(_Z² + _Z + 1))(х + 1 + RootOf(_Z² + _Z + 1))

> Split(х^2+у*х+1+у^2, x, 'b');

(x - RootOf(_Z² + y_Z + 1 + r))(x + y + RootOf(_Z² + y_Z + 1 + y²))

> b;

{RootOf(_Z² + у _Z + 1 + y²)}

В пакете определена еще одна подобная функция Splits, с которой можно познакомиться по справке на нее.

Функция Translate(a, х, х0) преобразует полином а(х) с подстановкой х=х+х0, где х0 — константа. Примеры применения этой функции даны ниже:

> Translate(х^2, х, 1);

1 + 2x + x²

> expand(eval(х^2,х=х+1));

1 + 2х + х²

> Translate(х^3,х,2);

8 + 12х + 6х² + х³

> expand(eval(х^3,х=х+2));

8 + 12х + 6х² + х³

> Translate((х+1)^3,х,-1);

5.5.3. Функции сортировки полиномов

Для сортировки полиномов предназначены следующие три функции:

Shorter(f, g, х)

Sort(v, х)

Shorten(f, x)

Здесь f и g полиномы, v — список полиномов и x — независимая переменная. Функции отличаются характером сортировки.

Функция Shorter определяет полином f как более короткий, чем g, по следующим признакам: меньшая длина, меньшее имя независимой переменной х, не дробный и меньшая степень других переменных. Функция Sort сортирует лист полиномов х по признакам, определяемым Shorter. Функция Shorten использует преобразования Мёбиуса. Многочисленные детали ее применения можно найти в справке по данной функции. Примеры применения функций сортировки:

> Shorten(х^2+х+1,х);

x² + 3

> Shorten(3*х^3+18*х+14,х);

x³ - 6

> Shorten(х^4+32);

х 4+ 2

> Shorter(х^3,х+5,х);

false

> Sort([х^3,х^2,х+1,х+5]);

Error, (in sort_poly) sort_poly uses a 2nd argument, x, which is missing

> Sort([х^3,х^2,x+1,x+5],x);

[1 + x, x + 5, x², x³]

5.5.4. Функции преобразования полиномов в PDE и обратно

Функция PolynomialToPDE(polys, vars, depvars) преобразует полиномы polys по независимым переменным vars в дифференциальные уравнения с частными производными (PDE). Другая функция PDEToPolynomial(pdes, vars, depvars) осуществляет обратное преобразование. Следующие примеры иллюстрируют применение этих функций:

> S:= PolynomialToPDE([(х^2 - 2*х + 1)*u + x^3*v], [х], [u,v]);

PDEToPolynomialS х uv x² 2x 1u x³v 56 Введение в - фото 560

> PDEToPolynomial(S, [х], [u,v]);

[(x² - 2x + 1)u + x³v]

5.6. Введение в интерполяцию и аппроксимацию

5.6.1. Основные понятия

Если некоторая зависимость y(х) представлена рядом табличных отсчетов y i(х i), то интерполяцией принято называть вычисление значений y(х) при заданном х, расположенном в интервале между отсчетами. За пределами общего интервала определения функции [ a, b ], то есть при x и x>b вычисление y(x) называют экстраполяцией (или, иногда, предсказанием значений функции). В данном случае речь идет об одномерной интерполяции, но возможны двумерная интерполяция функций двух переменных z(х, у) и даже многомерная интерполяция для функций многих переменных.

Интерполяция и экстраполяция часто выполняются по некоторой скрытой, но подразумеваемой, зависимости. Например, если узловые точки функции соединить отрезками прямых, то будем иметь многоинтервальную линейную интерполяцию данных. Если использовать отрезки параболы, то интерполяция будет параболической. Особое значение имеет многоинтервальная сплайн-интерполяция, области применения которой уже сейчас весьма обширны и непрерывно расширяются. Интерполяция рядом Фурье (набором синусоидальных функций) также достаточно хорошо известна, она эффективна при интерполяции периодических функций.

Аппроксимацией в системах компьютерной математики обычно называют получение приближенных значений какого-либо выражения. Однако под аппроксимацией функциональных зависимостей подразумевается получение некоторой конкретной функции, вычисленные значения которой с некоторой точностью аналогичны аппроксимируемой зависимости. Обычно предпочитают найти одну зависимость, приближающую заданный ряд узловых точек. Часто для этого используют степенные многочлены — полиномы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x