Миран Липовача - Изучай Haskell во имя добра!

Здесь есть возможность читать онлайн «Миран Липовача - Изучай Haskell во имя добра!» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ДМК Пресс, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Изучай Haskell во имя добра!: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Изучай Haskell во имя добра!»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.

Изучай Haskell во имя добра! — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Изучай Haskell во имя добра!», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Один из способов сделать для конструктора типа экземпляр класса Foldableсостоит в том, чтобы просто напрямую реализовать для него функцию foldr. Но другой, часто более простой способ состоит в том, чтобы реализовать функцию foldMap, которая также является методом класса типов Foldable. У неё следующий тип:

foldMap :: (Monoid m, Foldable t) => (a –> m) –> t a –> m

Её первым параметром является функция, принимающая значение того типа, который содержит наша сворачиваемая структура (обозначен здесь как a), и возвращающая моноидное значение. Второй её параметр – сворачиваемая структура, содержащая значения типа a. Эта функция отображает структуру с помощью заданной функции, таким образом, производя сворачиваемую структуру, которая содержит моноидные значения. Затем, объединяя эти моноидные значения с помощью функции mappend, она сводит их все в одно моноидное значение. На данный момент функция может показаться несколько странной, но вы увидите, что её очень просто реализовать. И такой реализации достаточно, чтобы определить для нашего типа экземпляр класса Foldable! Поэтому если мы просто реализуем функцию foldMapдля какого-либо типа, то получаем функции foldrи foldlдля этого типа даром!

Вот как мы делаем экземпляр класса Foldableдля типа:

instance F.Foldable Tree where

foldMap f EmptyTree = mempty

foldMap f (Node x l r) = F.foldMap f l `mappend`

f x `mappend`

F.foldMap f r

Если нам предоставлена функция, которая принимает элемент нашего дерева и возвращает моноидное значение, то как превратить наше целое дерево в одно моноидное значение? Когда мы использовали функцию fmapс нашим деревом, мы применяли функцию, отображая с её помощью узел, а затем рекурсивно отображали с помощью этой функции левое поддерево, а также правое поддерево. Здесь наша задача состоит не только в отображении с помощью функции, но также и в соединении значений в одно моноидное значение с использованием функции mappend. Сначала мы рассматриваем случай с пустым деревом – печальным и одиноким деревцем, у которого нет никаких значений или поддеревьев. Оно не содержит значений, которые мы можем предоставить нашей функции, создающей моноид, поэтому мы просто говорим, что если наше дерево пусто, то моноидное значение, в которое оно будет превращено, равно значению mempty.

Случай с непустым узлом чуть более интересен. Он содержит два поддерева, а также значение. В этом случае мы рекурсивно отображаем левое и правое поддеревья с помощью одной и той же функции f, используя рекурсивный вызов функции foldMap. Вспомните, что наша функция foldMapвозвращает в результате одно моноидное значение. Мы также применяем нашу функцию fк значению в узле. Теперь у нас есть три моноидных значения (два из наших поддеревьев и одно – после применения fк значению в узле), и нам просто нужно соединить их. Для этой цели мы используем функцию mappend, и естественным образом левое поддерево идёт первым, затем – значение узла, а потом – правое поддерево [14] Это определение представляет собой один из возможных способов обхода двоичного дерева: «левый – корень – правый». Читатель может самостоятельно реализовать экземпляры для представления других способов обхода двоичных деревьев. – Прим. ред. .

Обратите внимание что нам не нужно было предоставлять функцию которая - фото 83

Обратите внимание, что нам не нужно было предоставлять функцию, которая принимает значение и возвращает моноидное значение. Мы принимаем эту функцию как параметр к foldMap, и всё, что нам нужно решить, – это где применить эту функцию и как соединить результирующие моноиды, которые она возвращает.

Теперь, когда у нас есть экземпляр класса Foldableдля нашего типа, представляющего дерево, мы получаем функции foldrи foldlдаром! Рассмотрите вот это дерево:

testTree = Node 5

(Node 3

(Node 1 EmptyTree EmptyTree)

(Node 6 EmptyTree EmptyTree)

)

(Node 9

(Node 8 EmptyTree EmptyTree)

(Node 10 EmptyTree EmptyTree)

)

У него значение 5в качестве его корня, а его левый узел содержит значение 3со значениями 1слева и 6справа. Правый узел корня содержит значение 9, а затем значения 8слева от него и 10в самой дальней части справа. Используя экземпляр класса Foldable, мы можем производить всё те же свёртки, что и над списками:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Изучай Haskell во имя добра!»

Представляем Вашему вниманию похожие книги на «Изучай Haskell во имя добра!» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Изучай Haskell во имя добра!»

Обсуждение, отзывы о книге «Изучай Haskell во имя добра!» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x