Начиная с 486-й серии Intel берет курс на интеграцию процессора и сопроцессора в одной микросхеме. Процент брака в микросхемах слишком велик, поэтому Intel идет на хитрость: если у микросхемы брак только в сопроцессорной части, то на этом кристалле прожигаются перемычки, блокирующие сопроцессор, и микросхема продается как процессор 80486SX, не имеющий встроенного сопроцессора (в отличие от полноценной версии, которую назвали 80486DX). Бывали и обратные ситуации, когда сопроцессор повреждений не имел, зато процессор был неработоспособен. Такие микросхемы превращали в "сопроцессор 80487". Но это уже из области экзотики, и, по имеющейся у нас информации, до России такой сопроцессор не дошел.
Процессор Pentium во всех своих вариантах имел встроенный блок вычислений с плавающей точкой (FPU — Floating Point Unit), и отдельный сопроцессор ему не требовался. Таким образом, с приходом этого процессора тип Real
остался только для обратной совместимости, а на передний план вышли типы Single
, Double
и Extended
. Начиная с Delphi 4, тип Real
становится синонимом типа Double
, а старый 6-байтный тип получает название Real48
.
Здесь и далее под словом Real
мы будем понимать старый 6-байтный тип.
Примечание
Существует директива компилятора {$REALCOMPATIBILITY ON/OFF}
, при включении которой (по умолчанию она отключена) Real
становится синонимом Real48
, а не Double
.
Размеры полей для различных вещественных типов указаны в табл. 3.1.
Таблица 3.1.Размеры полей в вещественных типах
Тип |
Размер типа, байты |
Размер мантиссы, биты |
Размер экспоненты, биты |
Single |
4 |
23 |
8 |
Double |
8 |
52 |
11 |
Extended |
10 |
64 |
15 |
Real |
6 |
40 |
7 |
Другие параметры вещественных типов, такие как диапазон и точность, можно найти в справке Delphi.
3.2.3. Внутренний формат вещественных чисел
Рассмотрим тип Single
, т.к. он самый короткий и, следовательно, самый простой для понимания. Остальные типы отличаются от него только количественно. В дальнейшем числа в формате Single
мы будем записывать как s eeeeeeee mmmmmmmmmmmmmmmmmmmmmmm, где s означает знаковый бит, е — бит экспоненты, m — бит мантиссы. Порядок хранения битов в типе Single показан на рис. 3.1, б (по принятым в процессорах Intel правилам байты в многобайтных значениях переставляются так. что младший байт идет первым, а старший — последним, и вещественных чисел это тоже касается В мантиссе хранится двоичное число. Чтобы получить истинное значение мантиссы, к ней надо мысленно добавить слева единицу с точкой (т.е., например, мантисса 1010000000000000000000 означает двоичную дробь 1.101). Таким образом, имея 23 двоичных разряда, мы записываем числа с точностью до 24-х двоичных разрядов.
Экспонента — по определению всегда целое число. Но способ записи экспоненты в вещественных числах не совпадает с рассмотренным ранее способом записи чисел со знаком. Ноль в этом представлении записывается как 01111111 (в обычном представлении это равно 127). Соответственно. 10000000 (128 в обычном представлении) означает единицу, а 01111110 (126) означает -1, и т. д. (т.е. из обычного беззнакового числа надо вычесть 127, и получится число, закодированное в экспоненте). Такая запись чиста называется нормализованной .
Из описанных правил есть исключения. Так, если все биты экспоненты равны нулю (т.е. там стоит число -127), то к мантиссе перед ее началом надо добавлять не "1.", а "0." (денормализованная запись) . Это позволяет увеличить диапазон вещественных чисел. Если бы этого исключения не было, то минимально возможное положительное число типа Single
было бы равно примерно 5,9·10 -39. А так появляется возможность использовать числа до 1,4·10 -45. Побочным эффектом этого является то, что числа, меньшие чем 1,17·10 -38, представляются с меньшей, чем 24 двоичных разряда, точностью. Если все биты в экспоненте равны единице, а в мантиссе — нулю, то мы получаем комбинацию, известную как INF
(от англ. Infinity — бесконечность). Эта комбинация используется тогда, когда результат вычислений превышает максимально допустимое форматом число. В зависимости от значения бита s бесконечность может быть положительной или отрицательной. Если же при такой экспоненте в мантиссе хоть один бит не равен нулю, такая комбинация называется NAN
(Not A Number — не число). Попытки работы с комбинациями NAN
или INF
приводят к ошибке времени выполнения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу