Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На некоторое время я забросил рекомендации, пока не оказался в Wikimart.ru – тогда поездка в офис Netflix и рассказ Эрика Колсона об их технологиях сподвигли меня на полную смену технологий. На самом деле Wikimart.ru это было не нужно, все мои старые наработки успешно работали и на базах данных. Но именно Hadoop на тот момент открыл для меня границы невозможного – масштабирование вычислений вплоть до тысячи компьютеров одновременно. Мне не нужно было переписывать алгоритмы, ускорять их – достаточно было просто добавить еще компьютеров в кластер. Примерно через два года, в октябре 2012-го, я написал текст, оригинал которого представлен ниже.

Сервис рекомендаций для интернет-магазинов

Цель

Создать простой и быстрый облачный сервис рекомендаций товаров, который можно встраивать на сайт магазина без вмешательства во внутреннюю архитектуру сайта.

Монетизация

Магазины могут платить по следующей схеме в порядке приоритета:

• оплата за заказы. Есть идея использовать анализ мерчандайзинга для точного определения покупки рекомендованного товара;

• оплата за клики;

• оплата за допсервисы, такие как предоставление персональных рекомендаций в рассылки или офлайн-данные по рекомендациям.

Типы рекомендаций

Сервис может предоставлять следующие типы рекомендаций:

• поисковые рекомендации (внешний и внутренний поиск);

• наиболее популярные товары;

• товарные рекомендации (После просмотра купили, С этим товаром часто покупают);

• персональные рекомендации на сайте и в рассылках.

Техническое описание

Сервис должен быть разделен на четыре абсолютно независимых блока:

• сервис будет собирать данные на сайте интернет-магазина с помощью JS-трекеров. Данные логируются на отдельные серверы;

• отдельно скачиваются данные (если возможно) по наличию товаров в магазине, то есть обычные yml-файлы;

• раз в сутки или чаще данные обрабатываются при помощи MapReduce. Рассчитываются рекомендации и помещаются в БД или файлы;

• отдельный веб-сервис выдает рекомендации на сайте магазина. Важно: нужно показывать только те товары, которые есть в наличии в магазине.

Внедрение

Типовое внедрение должно включать установку JS-кода на сайт:

• трекера JS для сбора данных. Если установлен Google Analytics, то отдача важных событий на сайте (транзакция, добавление в корзину и т. д.);

• сниппета, который будет тянуть данные из веб-сервисов.

Это была полностью законченная идея создания сервиса рекомендаций для любого числа магазинов. В ноябре 2012-го на конференции ко мне подошел Николай Хлебинский и предложил делать такой сервис. Самое интересное, что моего текста он до этого не видел, но его заинтересовала моя презентация [115], а летом, за пару месяцев до этого, он писал мне письма с вопросами о моих наработках, которые я оставлял без ответа, потому что не хотел раскрывать свои идеи. Но наша встреча была вопросом времени и Колиного упорства. Следующим шагом мы образовали партнерство, расписали наши доли и подписали простое соглашение между собой: в итоге Николай Хлебинский становился генеральным директором компании, Андрей Чиж техническим директором, а я директором по аналитике. Я до конца декабря уже сделал первые алгоритмы, начальные строчки которых были написаны в фудкорте ТЦ «Гагаринский» в Москве. За восемь месяцев до этого у меня родилась дочь – я шел гулять с коляской, брал с собой раскладную табуретку и писал код на планшете, сидя на улице в мороз. А уже в марте 2013-го мы запустились [116]. Мы знали, что параллельно с нами идет разработка похожего проекта crossss.ru, и хотели запуститься до них – кто первый встал, того и тапки. И нам это удалось. В то время партнеры Retail Rocket хорошо дополняли друг друга, каждый занимался своим делом и делал его на отлично, а через какое-то время мы получили инвестиции от Impulse VC – я бы рекомендовал всем хорошим проектам обращаться к ним за инвестициями.

Вначале мы опасались конкурентной борьбы, но она оказалось интересной – самым главным нашим конкурентом оказалась внутренняя разработка в компаниях. Какой-то сотрудник или команда в интернет-магазине вызывались самостоятельно написать такой сервис – обычно через год такой клиент возвращался к нам с контрактом. Ближе к 2020 году тренд изменился, конкурентная борьба между сервисами усилилась. Магазины начали доверять внешним сервисам и аутсорсить автоматизацию маркетинга и рекомендации. Я считаю, что мы сделали большой вклад в развитие этого доверия на рынке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x