Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Еще будучи студентом, я владел несколькими языками программирования и даже успел поработать полтора года разработчиком ПО. Времена тогда были сложными – я поступил в МФТИ в июне 1998 года, а в августе случился дефолт. Жить на стипендию было невозможно, денег у родителей я брать не хотел. На втором курсе мне повезло, меня взяли разработчиком в одну из компаний при МФТИ – там я углубил знание ассемблера и Си. Через какое-то время я устроился в техническую поддержку компании StatSoft Russia – здесь я прокачал статистический анализ. В Ozon.ru прошел обучение и получил сертификат SAS, а еще очень много писал на SQL. Опыт программирования мне здорово помог – я не боялся чего-то нового, просто брал и делал. Если бы у меня не было такого опыта программирования, в моей жизни не было бы многих интересных вещей, в том числе компании Retail Rocket, которую мы основали с моими партнерами.

Датасет

Датасет – это набор данных, чаще всего в виде таблицы, который был выгружен из хранилища (например, через SQL) или получен иным способом. Таблица состоит из столбцов и строк, обычно именуемых как записи. В машинном обучении сами столбцы бывают независимыми переменными (independent variables), или предикторами (predictors), или чаще фичами (features), и зависимыми переменными (dependent variables, outcome). Такое разделение вы встретите в литературе. Задачей машинного обучения является обучение модели, которая, используя независимые переменные (фичи), сможет правильно предсказать значение зависимой переменной (как правило, в датасете она одна).

Основные два вида переменных – категориальные и количественные. Категориальная (categorical) переменная содержит текст или цифровое кодирование «категории». В свою очередь, она может быть:

• Бинарной (binary) – может принимать только два значения (примеры: да/нет, 0/1).

• Номинальной (nominal) – может принимать больше двух значений (пример: да/нет/не знаю).

• Порядковой (ordinal) – когда порядок имеет значение (пример, ранг спортсмена, номер строки в поисковой выдаче).

Количественная (quantitative) переменная может быть:

• Дискретной (discrete) – значение подсчитано счетом, например, число человек в комнате.

• Непрерывной (continuous) – любое значение из интервала, например, вес коробки, цена товара.

Рассмотрим пример. Есть таблица с ценами на квартиры (зависимая переменная), одна строка (запись) на квартиру, у каждой квартиры есть набор атрибутов (независимы) со следующими столбцами:

• Цена квартиры – непрерывная, зависимая.

• Площадь квартиры – непрерывная.

• Число комнат – дискретная (1, 2, 3…).

• Санузел совмещен (да/нет) – бинарная.

• Номер этажа – порядковая или номинальная (зависит от задачи).

• Расстояние до центра – непрерывная.

Описательная статистика

Самое первое действие после выгрузки данных из хранилища – сделать разведочный анализ (exploratory data analysis), куда входит описательная статистика (descriptive statistics) и визуализация данных, возможно, очистка данных через удаление выбросов (outliers).

В описательную статистику обычно входят различные статистики по каждой из переменных во входном датасете:

• Количество непустых значений (non missing values).

• Количество уникальных значений.

• Минимум/максимум.

• Среднее значение.

• Медиана.

• Стандартное отклонение.

• Перцентили (percentiles) – 25 %, 50 % (медиана), 75 %, 95 %.

Не для всех типов переменных их можно посчитать – например, среднее значение можно рассчитать только для количественных переменных. В статистистических пакетах и библиотеках статистического анализа уже есть готовые функции, которые считают описательные статистики. Например, в библиотеке pandas для Python есть функция describe, которая сразу выведет несколько статистик для одной или всех переменных датасета:

s = pd.Series([4–1, 2, 3])

s.describe()

count 3.0

mean 2.0

std 1.0

min 1.0

25 % 1.5

50 % 2.0

75 % 2.5

max 3.0

Хотя эта книга не является учебником по статистике, дам вам несколько полезных советов. Часто в теории подразумевается, что мы работаем с нормально распределенными данными, гистограмма которых выглядит как колокол (рис. 4.1).

Очень рекомендую проверять это предположение хотя бы на глаз. Медиана – значение, которое делит выборку пополам. Например, если 25-й и 75-й перцентиль находятся на разном расстоянии от медианы, это уже говорит о смещенном распределении. Еще один фактор – сильное различие между средним и медианой; в нормальном распределении они практически совпадают. Вы будете часто иметь дело с экспоненциальным распределением, если анализируете поведение клиентов, – например, в Ozon.ru время между последовательными заказами клиента будет иметь экспоненциальное распределение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x