Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И нам удалось ее адаптировать для нужд аналитики! Аналитика, как и программирование, – творческий процесс. Представьте, что вам нужно построить стену. У вас есть один рабочий. Если вы добавите еще одного – скорость вырастет примерно в два раза. В творческом процессе так не получится. Скорость создания проекта не вырастет в два раза. Да, можно проект декомпозировать, но я сейчас обсуждаю задачу, которая не декомпозируется, и ее должен делать один человек. Парный же подход позволяет многократно ускорить этот процесс. Один человек за клавиатурой, второй сидит рядом. Две головы работают над одной проблемой. Когда я решаю сложные проблемы, я разговариваю сам с собой. Когда разговаривают две головы друг с другом – они ищут причину лучше. Мы используем схему парной работы для следующих задач.

• Когда нужно передать знания одного проекта от одного сотрудника другому, например, был нанят новичок. «Головой» будет сотрудник, который передает знания, «руками» за клавиатурой – кому передают.

• Когда проблема сложная и непонятная. Тогда два опытных сотрудника в паре решат ее намного эффективней одного. Будет сложнее сделать задачу анализа однобоко.

Обычно на планировании мы переносим задачу в категорию парных, если понятно, что она подходит под критерии таковой.

Плюсы парного подхода – время используется намного эффективней, оба человека очень сфокусированы, они друг друга дисциплинируют. Сложные задачи решаются более творчески и на порядок быстрей. Минус – в таком режиме невозможно работать больше нескольких часов, очень сильно устаешь.

Технический долг

Еще одна важная вещь, которой я научился у инженеров Retail Rocket [31], – работа с техническим долгом (technical debt). Технический долг – это работа со старыми проектами, оптимизация скорости работы, переход на новые версии библиотек, удаление старого программного кода от тестирования гипотез, инженерное упрощение проектов. Все эти задачи занимают добрую треть времени разработки аналитики. Приведу цитату технического директора Retail Rocket Андрея Чижа [31]:

«Я еще не встречал компаний за свою практику (а это более 10 компаний, в которых работал сам, и примерно столько же, с которыми хорошо знаком изнутри), кроме нашей, у которых в бэклоге были бы задачи на удаление функционала, хотя, наверное, такие существуют».

Я тоже не встречал. Видел «болота» программных проектов, где старье мешает создавать новое. Суть технического долга – все, что вы сделали ранее, нужно обслуживать. Это как с ТО автомобиля – его нужно делать регулярно, иначе машина сломается в самый неожиданный момент. Программный код, в который давно не вносились изменения или обновления, – плохой код. Обычно он уже работает по принципу «работает – не трогай». Четыре года назад я общался с разработчиком Bing. Он рассказал, что в архитектуре этого поискового движка есть скомпилированная библиотека, код которой потерян. И никто не знает, как это восстановить. Чем дольше это тянется, тем хуже будут последствия.

Как аналитики Retail Rocket обслуживают технический долг:

• После каждого проекта тестирования гипотез мы удаляем программный код этой гипотезы везде, где только можно. Это избавляет нас от ненужного и неработающего хлама.

• Если происходит обновление каких-либо версий библиотек – мы делаем это с некоторым запозданием, но делаем регулярно. Например, платформу Spark мы апгрейдим регулярно, начиная с версии 1.0.0.

• Если какие-либо компоненты обработки данных работают медленно – ставим задачу и занимаемся ею.

• Если есть какие-то потенциально опасные риски – например, переполнение дисков кластера, тоже ставится соответствующая задача.

Работа с техническим долгом – это путь к качеству. Меня убедила в этом работа в проекте Retail Rocket. С инженерной точки зрения проект сделан как в «лучших домах Калифорнии».

Глава 5

Данные

Данные представление фактов понятий или инструкций в форме приемлемой для - фото 15

Данные – представление фактов, понятий или инструкций в форме, приемлемой для общения, интерпретации или обработки человеком или с помощью автоматических средств.

Википедия

Прежде чем мы перейдем к собственно анализу данных, считаю необходимым рассмотреть предмет изучения. Цитата выше – это определение данных, которое дает Википедия. Оно очень сухое, но емкое. В моей книге я намеренно сузил это определение: под данными будут пониматься цифровые данные, которые могут быть прочитаны и обработаны ПО.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x