Сила глубоких нейронных сетей в том, что они могут автоматически изучать полезные атрибуты, такие как детекторы признаков в СНС. Глубокое обучение иногда так и называют — «обучение признакам», поскольку глубокие сети по сути изучают новое представление входных данных, которое лучше подходит для прогнозирования целевого выходного атрибута, чем исходный необработанный ввод. Каждый нейрон в сети определяет функцию, которая отображает значения в новый входной атрибут. Поэтому нейрон в первом слое сети может изучать функцию, которая преобразует необработанные входные значения (например, вес и рост) в более полезный атрибут (например, ИМТ). Однако выход этого нейрона наравне с его сестринскими нейронами в первом слое подается в нейроны второго слоя, изучающие функции, которые преобразуют выходные данные первого слоя в новые и еще более полезные представления. Этот процесс сопоставления входных данных с новыми атрибутами и передачи этих новых атрибутов в качестве входных данных для следующих функций распространяется по сети, и по мере того, как сеть становится глубже, она может изучать все более и более сложные сопоставления. Именно способность автоматически изучать сложные сопоставления входных данных с полезными атрибутами делает модели глубокого обучения настолько точными при выполнении задач с многомерным вводом (таких, как обработка изображений и текста).
Давно известно, что чем глубже нейронная сеть, тем более сложные отображения данных она способна изучать. Однако развитие глубокое обучение получило лишь в последние несколько лет, и причина этого заключается в том, что стандартная комбинация случайного веса с последующим алгоритмом обратного распространения ошибки не очень хорошо работала с глубокими сетями. Во-первых, ошибка в этом случае распределяется по мере того, как процесс возвращается со слоя на слой, так что к тому времени, когда алгоритм достигает ранних слоев глубокой сети, оценки ошибок уже не так полезны [21]. В результате слои в ранних частях сети не учатся полезным преобразованиям данных. Однако в последние годы были разработаны новые типы нейронов и адаптации к алгоритму обратного распространения, которые помогают решить эту проблему. Также было обнаружено, что требуется осторожная инициализация весов сети. Два других фактора, которые усложняли обучение глубоких сетей, заключались в том, что для обучения нейронной сети требуется большая вычислительная мощность и к тому же нейронные сети показывают максимальную эффективность на большом количестве обучающих данных. В последние годы большие вычислительные мощности стали доступнее, и это сделало обучение глубоких сетей осуществимым.
Деревья решений
Линейная регрессия и нейронные сети лучше всего работают с числовыми входными данными. Если входные атрибуты в наборе данных в основном номинальные или порядковые, лучше использовать другие алгоритмы и модели машинного обучения, такие как деревья решений.
Дерево решений кодирует условный оператор если-то-иначе в древовидной структуре. Рис. 16 иллюстрирует дерево решений для проблемы, стоит ли смотреть фильм. Прямоугольники с закругленными углами представляют собой тесты атрибутов, а квадраты обозначают узлы решения, или классификации. Это дерево кодирует следующие правила: если фильм — комедия, то смотреть; если фильм не комедия, а триллер, то тоже смотреть; если он не комедия и не триллер, то не смотреть . Процесс решения для объекта в структуре дерева решений начинается с его вершины и спускается вниз, последовательно тестируя атрибуты объекта. Каждый узел дерева устанавливает один атрибут для тестирования, и процесс спускается вниз узел за узлом, выбирая следующую ветвь по метке, соответствующей значению теста атрибута. Финальное решение — это метка конечного (или листового) узла, к которому спускается объект.
Все пути в структуре дерева решений от корня до листа определяются правилом классификации, состоящим из последовательных тестов. Цель обучения дерева решений состоит в том, чтобы найти такие правила классификации, которые делят обучающий набор данных на группы объектов, имеющих одинаковое значение целевого атрибута. Идея состоит в том, что если правило классификации может отделить от набора данных подмножество объектов с одинаковым целевым значением и если оно истинно для нового объекта (т. е. такого, который идет по этому пути в дереве), то вероятно, что правильный прогноз для этого нового объекта — целевое значение, общее для всех обучающих объектов, соответствующих этому правилу.
Читать дальше
Конец ознакомительного отрывка
Купить книгу