Джон Келлехер - Наука о данных. Базовый курс

Здесь есть возможность читать онлайн «Джон Келлехер - Наука о данных. Базовый курс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Альпина Паблишер, Жанр: Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Наука о данных. Базовый курс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Наука о данных. Базовый курс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.
Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.
«Наука о данных» уже переведена на японский, корейский и китайский языки.

Наука о данных. Базовый курс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Наука о данных. Базовый курс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1. Рассчитайте ошибку для каждого из нейронов в выходном слое и обновите согласно правилу веса входящих связей этих нейронов.

2. Поделитесь ошибкой, рассчитанной для нейрона, с каждым из нейронов в предыдущем слое, который связан с ним, пропорционально весу связей между двумя нейронами.

3. Для каждого нейрона на предыдущем уровне вычислите общую ошибку сети, за которую он ответственен, суммируя с теми ошибками, которые были переданы обратно в него, и используйте результат этого суммирования, чтобы обновить веса на связях, входящих в этот нейрон.

4. Пройдите таким же образом остальные слои в сети, повторяя шаги 2 и 3 до тех пор, пока веса между входными нейронами и первым слоем скрытых нейронов не будут обновлены.

При обратном распространении ошибки вес, обновляемый для каждого нейрона, высчитывается так, чтобы уменьшить, но не устранить полностью ошибку нейрона в обучающем экземпляре. Причина этого заключается в том, что цель обучения сети — дать ей возможность сделать выводы, которых нет в данных обучения, а не просто запомнить эти данные. Таким образом, каждое обновление весов продвигает сеть к такому их набору, который лучше всего подходит к набору данных, и на протяжении многих итераций сеть постепенно сужает значения весов в наборе, которые учитывают общее распределение данных больше, чем характеристики обучающих объектов. В некоторых версиях обратного распространения ошибки веса обновляются только после того, как несколько объектов (или пакет объектов) были представлены сети, а не после ввода каждого обучающего объекта. Единственная настройка, необходимая для этого, заключается в том, чтобы алгоритм использовал среднюю ошибку сети для этих объектов в качестве меры ошибки на выходе для процесса обновления веса.

Одним из наиболее удивительных технических достижений последних 10 лет стало появление глубокого обучения. Сети глубокого обучения — это те же нейронные сети, имеющие несколько [19]слоев скрытых юнитов, — другими словами, они глубоки с точки зрения количества скрытых слоев. Нейронная сеть на рис. 15 имеет пять слоев: один входной, три скрытых (черные кружки) и один выходной слой справа, содержащий два нейрона. Эта сеть иллюстрирует то, что в каждом слое может быть разное количество нейронов: входной слой содержит три нейрона, первый скрытый слой — пять, следующие два скрытых слоя — четыре, а выходной слой — два. На примере этой сети видно и то, что выходной слой также может иметь несколько нейронов. Использование нескольких выходных нейронов полезно, если целью является номинальный или порядковый тип данных, имеющий разные уровни. В подобных сценариях сеть настраивают таким образом, чтобы для каждого уровня существовал один выходной нейрон, и обучают ее так, чтобы для каждого входа только один из выходных нейронов выводил высокую активацию (означающую прогнозируемый целевой уровень).

Подобно предыдущим сетям, которые мы рассматривали, это также полностью подключенная сеть с прямой связью. Однако не все сети являются таковыми. Было разработано множество типов сетевых топологий. Например, рекуррентные нейронные сети (РНС) вводят в сетевую топологию петли: выходное значение нейрона возвращается на один из входов в процессе обработки следующего набора входных значений. Этот цикл дает сети память, которая позволяет ей обрабатывать каждый вход в контексте предыдущих, уже обработанных ею раньше. Следовательно, РНС подходят для обработки последовательных данных, таких как естественный язык [20]. Другой популярной архитектурой глубоких нейронных сетей являются сверхточные нейронные сети (СНС). СНС были первоначально разработаны для использования с данными изображений {1} . Сеть распознавания изображений должна обнаруживать на изображении визуальный признак независимо от того, в какой части изображения он встречается. Например, если сеть выполняет распознавание лиц, она должна уметь распознавать форму глаза, где бы он ни находился — в верхнем правом углу или в центре изображения. СНС достигают этого за счет групп нейронов, которые имеют одинаковый набор весов на своих входах. В этом контексте набор входных весов определяет функцию, которая возвращает истинное значение, если в наборе поступающих в нее пикселей появляется определенный визуальный признак. Это означает, что каждая группа нейронов с одинаковыми весами учится идентифицировать определенный визуальный признак и каждый нейрон в группе действует как детектор этого признака. В СНС нейроны в каждой группе расположены так, чтобы каждый исследовал свой фрагмент изображения, а вместе группа охватывала бы его целиком. Таким образом, если заданный визуальный признак присутствует на изображении, один из нейронов в группе идентифицирует его.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Наука о данных. Базовый курс»

Представляем Вашему вниманию похожие книги на «Наука о данных. Базовый курс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Наука о данных. Базовый курс»

Обсуждение, отзывы о книге «Наука о данных. Базовый курс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x